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Abstract: Maritime transport is the backbone of international trade of goods. Therefore, seaports are
of great importance for maritime transport. Container transport plays an important role in maritime
transport and is increasing year by year. Containers transported to a container terminal are stored
in container yards side by side and on top of each other, forming blocks. If a container that is not
on top of the block has to be retrieved, the containers that are above the required container must be
relocated before the required container is retrieved. These additional container relocations, which
block the retrieval of the required container, slow down the entire retrieval process. The container
relocation problem, also known as the block relocation problem, is an optimization problem that
involves finding an optimal sequence of operations for retrieving blocks (containers) from a container
yard in a given order, minimizing additional relocations of blocking containers. In this paper, the
focus is on the two-dimensional, static, offline and the restricted container relocation problem of
real-size yard container bays. A new method for resolving the container relocation problem that uses
a genetic algorithm is proposed to minimize the number of relocations within the bay. The method is
evaluated on well-known test instances, and the obtained results are compared with the results of
various relevant models for resolving the container relocation problem. The results show that the
proposed method achieves the best or the second-best result for each test instance within the test set.

Keywords: container yard bay; container relocation problem; optimization problem; genetic algorithm

1. Introduction

These days, maritime transport plays a very important role in global transport, as
more than 90% of global trade is carried out by sea [1]. Considering various transport
modes of maritime transportation, more than 15% refers to container transport [2]. There-
fore, container transportation plays an essential role in world trade, and consequently
container terminals have become a very important hub of global trade. An increasing
number of container shipments leads to higher demands on the seaport container terminals,
container logistics, and management, as well as on technical equipment [3]. Therefore,
container transportation requires almost perfect coordination between all stakeholders,
work resources and processes within the entire container transport system [4].

There are a large number of logistics problems inside container terminals (berth
allocation, stacking, transport optimization, crane split, etc.) that have to be optimized
and mutually integrated to improve and speed up the overall container transfer through
the terminal in order to reduce the waiting time of the transfer means (vessels, trains and
trucks) when loading and unloading containers and thus to increase the total container
traffic within the terminal. According to [5], one of the most important optimization
problems at the container terminal is the stacking of containers in the stacking area (the
part of a storage yard). On average, 80% of the containers are transferred to the stacking
area before being transferring from the container terminal [5]. Thus, the optimization of
the stacking logistics problems has become one of the most important research areas with
respect to the optimization of container terminal processes.
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In the storage area, containers are stacked side by side and on top of each other,
forming blocks. When a target container is to be retrieved, there is a high probability that
one or more containers are stacked above it and blocking its retrieval. Moving blocking
containers adds additional cost to the retrieval of a target container due to the additional
crane running time and increased retrieval time. Therefore, containers must be stacked in
such a way that there is a minimum number of additional container movements within
the stacking area [6]. These additional unproductive movements are called reshuffles. As
mentioned earlier, reshuffling slows down the retrieval time of the target container and thus
the total container shipment time between the stacking area and other areas of the container
terminal. Therefore, the crane operation schedule needs to be optimized to minimize the
number of reshuffles, i.e., to minimize the time of retrieving the blocking containers, as
well as to maximize the utility of each crane operating in the stacking area.

One of the well-known post-stacking optimization problems within the stacking
area is the Container Relocation Problem (CRP), also known as Block Relocation Problem
(BRP) [7]. In CRP, the operations of reshuffling the blocking containers and retrieving the
next container that has to be shipped are performed in parallel. Each container must be
retrieved with a minimum amount of reshuffling of the blocking containers. Within the
CRP, there are two main sub-problems: restricted and unrestricted CRP [8]. In the restricted
CRP, when the desired (target) container is retrieved, only the containers that block the
retrieval of the desired (target) container can be relocated. In contrast to the restricted CRP,
in the unrestricted CRP, all containers can be relocated to facilitate the reach of containers
that must be retrieved later. Therefore, solving restricted CRP is much more complex and
demanding with respect to the unrestricted CRP. The restricted CRP is NP-hard [5], so it is
difficult to determine a good solution for retrieving all containers with a minimum number
of unproductive reshuffles.

One of the possible solutions to solve the restricted CRP is to implement nature-
inspired metaheuristic algorithms that solve various NP-hard real-life problems very effec-
tively. Metaheuristics are becoming very popular over the last decade due to their simplicity,
flexibility, derivation-free mechanism and local optima avoidance capability [9]. According
to [6], the term metaheuristics is defined in computer science and mathematical optimiza-
tion as a higher-level process or heuristics designed to find, generate or select heuristics that
can find a sufficiently good solution for some optimization problem, especially when the
available information in the optimization problem is incorrect or incomplete, or the com-
putational capacity is limited. Although it was invented a long time ago [10], the genetic
algorithm is still one of the most used nature-inspired metaheuristics in solving different
optimization problems. In [11], an overview of the use of nature-inspired metaheuristics for
optimization problems in a container terminal is presented. Thus far, the genetic algorithm
has been used in [7,12–19]. Only the solutions in [17–19] use a genetic algorithm to solve
restricted CRP. Besides [17–19], which use a genetic algorithm to solve restricted CRP, there
are only two solutions for restricted CRP [20,21] that use nature-inspired metaheuristics.
In [20], the ant colony optimization algorithm [22] was used, while in [21], simulation an-
nealing [23] is used for restricted CRP solving. Considering the excellent results of [17,18]
obtained in resolving the most complex test set of restricted CRPs [24], we assume that
there is a great potential for using nature inspired metaheuristics to solve restricted CRP.
The test set described in [24] consists of a huge set of CRPs considering different bay sizes.
All CRPs within this test set have a maximum occupancy capacity, which makes it more
difficult to solve the problem given the large number of blocking containers.

In [17,18], for solving restricted CRP, the use of a genetic algorithm is proposed, to
determine the order of executing one of the four relocation rules (based on stacks occupancy)
for blocked containers on the terminal stacking area. These rules prefer to perform the
reshuffle of the blocking container to the nearest possible stack (column) that satisfies the
restrictions set within a particular relocation rule. Along with minimizing the number
of relocations in CRP, these four rules of relocation optimize the horizontal movement of
reshuffled containers. The main objective of CRP is to minimize the number of reshuffles.
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When applying these four rules of relocation to solve CRP, the focus is sometimes on
optimizing the horizontal distance (relocate to the nearest stack) rather than the number of
relocations. In certain situations, the total number of relocations ends up being lower if the
reshuffled container is not relocated to the nearest possible stack (column). Therefore, it is
necessary to improve the method described above, which uses a genetic algorithm.

The list of contributions of this paper is as follows. We have studied in the literature
review only the methods and models that have been used to solve the most complex test
instances of restricted CRPs [24]. We believe that these methods and models are the most
appropriate for comparison with our new method. In this paper, we propose a new genetic
algorithm-based solution in order to minimize the number of relocations within the bay.
Using the genetic algorithm, the method finds an optimal sequence of container relocations
to determine a minimum number of total relocations. Considering a certain container
that has to be relocated, the best current stack (column) position is not determined, but
the stack position that will optimize the total number of relocations at the end. We also
implement the linear programming model to resolve CRP as well as to get optimal results
for small bay sizes. As stated before, CRP is NP-hard problem. Hence, using the linear
programming model, it cannot only resolve CRPs for large bay sizes. Nevertheless, the
obtained optimal results for small bay sizes confirm that our new method also obtains
optimal results for small sizes. The complete results of our new optimization technique,
compared with the results of different best models obtained on the most complex test
instances of restricted CRPs [24], have shown that our proposed method achieves optimal
(for small test instances) or the best possible solutions (for large test instances) for most test
instances. In addition, we created a statistical t-test to compare the results between our
previous method [17] and our new method to demonstrate the difference between these
results. Due to the very high t-value that is obtained, a large difference between the two
sample groups can be confirmed.

The paper is organized in five interdependent sections. Section 2 introduces the basic
terminology of restricted CRP. In Section 3, we discuss the literature review. The proposed
genetic algorithm-based method for solving the CRP is presented in Section 4. In Section 5,
the evaluation of our new method is presented with respect to the most complex test
instances of restricted CRPs [24]. Finally, a conclusion is given in Section 6.

2. Container Relocation Problem—Model Set Up

In this paper, we focus on solving the two-dimensional, static, offline, and restricted
container relocation problem. A two-dimensional problem means that the container reloca-
tion problem is solved for one bay with certain numbers of stacks and tiers (Figure 1).
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Figure 1. Yard bay with 3 tiers and 7 stacks. Figure 1. Yard bay with 3 tiers and 7 stacks.

As can be seen in Figure 1, the containers are marked with a different retrieval priority
(ordinal numbers) based on the transport documentation that specifies the departure order.
The retrieval represents the lifting of the target container and loading it onto a truck or
other internal transport unit [17]. Therefore, the retrieval time for each container is known
in advance (offline variant). A container with a smaller number has a higher priority and
must be retrieved earlier. If some container blocks access to a particular container that
needs to be retrieved next, it must be relocated to another free stack within the bay. These
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relocations of blocking containers, called “reshuffles”, slow down the entire process of
retrieving and shipping containers from the bay. The CRP focuses on finding the best
sequence of relocation positions to retrieve all containers within the given bay (respecting
their priority) with a minimum number of relocations [17]. The retrieval and relocation of
containers is performed by a yard stacking crane called a rubber tired gantry crane (RTG),
as shown in Figure 2.
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During the retrieval and shipping of containers within/from the bay, no new con-
tainers arrive in that bay. This is the static variant of the CRP. As mentioned earlier, the
restricted CRP is limited to moving only the blocking containers and retrieving the con-
tainer that is currently being shipped. Therefore, containers that are not blocking the next
shipping container cannot be moved to optimize the number of additional relocations.
Thus, this restricted CRP is much more complicated than the unrestricted CRP.

The definition of the problem can be formalized and relies on the assumptions A1 to
A13 and constraints C1 to C4 according to [17].

3. Literature Review

The CRP was first mentioned in [25]. In the research paper, the simulation model
has been used in order to analyze the impact of the number of stacks and tiers in a bay
with respect to the total number of crane operations. A similar approach for solving
CRP has been proposed in [26,27], where certain heuristic rules were applied for the first
time in order to reduce the total number of additional container relocations at a container
stacking area. In [28], an equation, which explains the relation between stacks’ height
within a bay and the expected number of container relocations within that bay with respect
to the number of containers, is proposed. Thereby, the corresponding maximum height
of the stacks (the number of containers that can stack above each other) is determined
within the bay to minimize additional container relocation operations. The integer linear
programming method has been used in [29–31] for solving these small data sets. However,
for real restricted CRP, where there is a large number of containers in one bay, linear
programming does not meet the requirements for efficiently solving restricted CRP.

Newer solutions usually use heuristic methods based on branching and bounding
method (B&B) with diverse searching and branching strategies [24,32–37]. In [32], for the
first time, the B&B and heuristic rule was proposed for determining the optimal positions
for blocking containers to minimize the amount of container reshuffling. Additionally, the
specific equation was proposed to estimate the number of reshuffles within a bay. The
A* (A-star) method, a path search algorithm implemented in [36], was used to minimize
additional reshuffles in restricted CRP together with a heuristic algorithm that shortened
the time for solving the problem. In [35,37], a new improved A* (A-star) method, which is
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based on iterative execution procedure, was proposed for solving restricted CRP. The new
heuristic approach, which considers in account the characteristics of the next relocating
container when deciding on the position of this container, is proposed in [27]. The new
heuristic approach is an improvement of the min–max approach for solving restricted CRP.
The improved search algorithm was applied to restricted CRP by reducing the complexity
of the search space for quicker obtaining the requested solution. In addition to the proposed
solutions, based on the B&B method, several models use other methods [24,34]. In [24], the
beam search algorithm was proposed for the same purpose. The improved beam search
algorithm was proposed in [34]. The Decision Support System (DSS) has been implemented
in order to optimize the entire Hong Kong container terminal [38]. To minimize the amount
of container reshuffling at a container stacking area, a rule Reshuffle Index (RI) was defined
specifying the stack with the smallest RI (a stack that contains the smallest number of
containers that must be retrieved before the blocking container being relocated) into which
the blocking container will be relocated in order to retrieve the desired (target) container
within the stacking area. Several authors introduce metaheuristic algorithms inspired
by nature to solve restricted CRP. According to [6], the term metaheuristics in computer
science and mathematical optimization is defined as a higher-level process or heuristics
designed to find, generate or select heuristics that can find a sufficiently good solution for
some optimization problem, especially when available information in the optimization
problem is incorrect or incomplete, or there is a limited computational capacity. Nature-
inspired metaheuristics algorithms have been applied to solve a large number of real-life
optimizing problems. These algorithms imitate various natural systems and processes
using mathematical models and algorithms.

As stated in the Introduction section, for solving restricted CRP, the use of the genetic
algorithm [10] is proposed in [17,18], which determines the order of execution of one of
the four relocation rules (based on the stacks occupancy) for blocked containers on the
terminal stacking area. These rules prefer to make the reshuffling of blocking containers to
the nearest possible stack (column), which satisfies the restrictions set within a particular
relocation rule. In this way, a minimum number of relocations is not obtained for each CRP.
Thus, in this paper, we propose a new method based on the genetic algorithm in order to
minimize the number of relocations within the bay for each CRP test problem. In addition
of using a genetic algorithm, some other nature-inspired metaheuristic algorithms have
been used in solving CRPs. Simulation annealing [23] is used for restricted CRP solving
in [21]. In [20], the Ant Colony algorithm [22] was used for restricted CRP resolving. In [17],
a method that implements a genetic algorithm is proposed for solving restricted CRP with
containers that are grouped by the retrieval time window. This problem is much easier
to solve than classic restricted CRP because more containers are retrieved in a common
time window. Containers within the same window do not always have to be retrieved in
the same order, but in such a way that the number of additional movements is minimal.
Although this method is used for the easier (simple) restricted CRP, it is interesting insofar
as the only solution, along with [17,18,20,21], that uses metaheuristic algorithms inspired
by nature for resolving restricted CRP.

In continuation, the focus will be on related papers dealing with the solution of
restricted CRP of the currently most complex test set in the literature, which was presented
in [24]. As stated before, this test set consists of different restricted CRPs in which the bays
are maximally occupied with containers. For the bay, consisting of W stacks and H tiers
(maximum stacking height), the maximum number of N containers that such a bay can store
is N = W × H − (H − 1). We assumed that the models proposed for finding the solution of
this test set are more referenced for being presented here. For this testing data set, the best
results were achieved by the methods proposed in [17,24,33,34]. As stated before, in [17],
the genetic algorithm is implemented within the proposed solution so that it finds the
best order to execute the container relocating rules by minimizing the number of container
reshuffling. The method in [17] is the only method that uses nature inspired metaheuristic
algorithm for resolving the most complex test set presented in [24]. Considering the very
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good results obtained when solving the CRP and possible improvements in the method,
we assume that there is a great room for improvement in restricted CRP solving with the
usage of nature-inspired metaheuristic algorithms.

Furthermore, there is a large number of newly proposed methods for solving CRP, and
some of them are described in [39–43]. However, the authors do not test out the methods
on this highly complex test set [24]. Therefore, we did not compare our new method with
these methods because we believe that the test set from [24] is the most relevant test set for
comparing methods for solving CRP. As mentioned earlier, the test set from [24] consists of
several restricted CRPs where the bays are maximally occupied by containers.

4. A New Method for CRP Resolving Based on Genetic Algorithm
4.1. Genetic Algorithm

As mentioned earlier, the genetic algorithm is a nature-inspired metaheuristic algo-
rithm based on a process of natural selection. Nature-inspired metaheuristic algorithms
generally find a solution to a given problem that is close to the optimum in a short time,
thus speeding up the process of finding a good enough solution. It cannot be said with
certainty that the solution is the best, since these algorithms have not searched the entire
solution space given the speed at which a solution is found. However, the relationship be-
tween the speed at which a solution is found and the goodness of the solution found argues
for the use of these algorithms in solving NP-hard problems such as the CRP. As stated
before, the genetic algorithm finds a solution to a given problem by imitating the process of
natural selection. At the beginning of the solution finding process, a sample set of potential
solutions (chromosomes) is randomly generated. This set is called the initial population.
Each solution in the population is called a chromosome. A chromosome consists of a set of
genes. A gene is part of an overall solution that represents the chromosome. To evaluate
how well each chromosome (i.e., its genes) represents the solution to the optimization
problem, a fitness function must be defined to determine the goodness of each chromosome
(solution). To have the process of natural selection work, each chromosome contains the
same genes and the same number of genes [10]. In order to obtain better solutions in the
next population of chromosomes, the basic operators of the genetic algorithm must be
applied to the chromosomes of the previous generation. Selection, crossover and mutation
are the basic operators of genetic algorithm. Selection selects better chromosomes from the
previous population that will be part of the next generation. The operator crossover crosses
two chromosomes from the previous population to create a better chromosome (solution)
for the next generation. Crossing of two good chromosomes promotes the creation of child
chromosomes that are better than their parent chromosomes. Mutation involves changing
one or more genes within a chromosome to eventually find a better chromosome. The
pseudo code of the genetic algorithm is shown in Algorithm 1.

4.2. A New Method for CRP Resolving

As mentioned earlier, the focus is on solving the two-dimensional, static, offline, and
restricted CRP. Figure 3 shows an example of a CRP on a bay with four tiers (t represents
the numbers of tiers, i.e., the height of the stacks) and four stacks (s represents the number
of stacks, i.e., the width of the bay). A bay consists of 12 containers.
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Algorithm 1. Pseudo code of genetic algorithm.
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The stacks are indexed from left to right with number values from 0 to 3, similarly
with the height of the stacks, i.e., tiers. The uppermost tier has index 0 (tier t0), and the
lowermost tier has index 3 (tier t3). The position of the containers is determined by an
ordered pair (t, s). For example, container 4 is located at position (1, 0). Each container has
a priority retrieving number according to which it is shipped from the bay. The smaller
the number, the sooner the container is shipped from the bay. The goal is to retrieve all
containers from the bay with the minimum number of reshuffles (relocations of blocking
containers) [17]. Only containers blocking the container currently being retrieved can be
relocated to another stack. Containers can be relocated to a particular stack only if the
stack is not fully occupied (the number of containers in the stack is 4). As mentioned
earlier, we propose a new method based on a genetic algorithm to minimize the number of
relocations within the bay. The genetic algorithm finds an optimal sequence of positions
for relocating blocking containers. The process of determining an optimal sequence of
container relocations using a genetic algorithm is described in detail below.

4.2.1. The Chromosome

Before starting the genetic algorithm, the chromosome that represents the solution
to the optimization problem must be defined. In our procedure for solving CRP, the
chromosome consists of a sequence of integer numerical values (genes) whose values
depend on the total number of stacks. Each numerical value represents the position
(stack) to which the next blocking container must be relocated. Thus, the values of the
genes within the chromosome are equal to the indices of the stacks. The example of a
chromosome solving the CRP on a bay with four tiers and four stacks (Figure 3) can be
seen in Figure 4.
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Figure 4. The example of a chromosome.

The first value (gene) is equal to 2, indicating that the first blocking container must be
relocated in the stack with index 2 (s2). Applying this chromosome to solve the problem
in Figure 3, the first blocking container is container 6 because it blocks the retrieval of the
container with priority 1. Therefore, as shown in Figure 5, the container with priority 6
must be relocated in stack 2 (s2). Then, the container with priority 1 can be retrieved and
shipped to the next transport location. It can be seen that the container with priority 2 can
be retrieved immediately because it is located on the top of the stack with index 0 (s0).
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Figure 5. The relocation of container 6 and the retrieval of container 1.

It may happen that the next blocking container cannot be moved to the position
defined in the solution (chromosome). There are two situations in which this can happen:
when the stack into which the blocking container must be relocated is completely full, and
when the position of relocating the blocking container is equal to the current position of
that container.

Considering the situation in Figure 6 (after the retrieval of the containers 1 and 2 in
the example showed in Figure 5), the next container to be retrieved is the container with
priority 3. The first blocking container is the container with priority 4 and the first unused
gene within the chromosome is number 3. It means that the container with priority 4 must
be moved to the stack with index 3. Stack 3 is fully occupied, so the second gene (number 3)
within the chromosome (potential solution) is skipped and does not apply to the relocation
of container 4. Therefore, container 4 is relocated to stack 2, because the first valid gene
within the chromosome is the gene with the value 2.



Appl. Sci. 2022, 12, 7397 9 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 28 
 

 
Figure 6. The relocation of container 4 with an example of a fully occupied stack. 

Similarly, if the next gene within the chromosome that represents the next location 
for the current blocking container has the value of the stack in which the current blocking 
container is already located, as in the fully occupied stack above, the first valid gene within 
the chromosome is used to perform the relocation of the blocking container. Considering 
the possibility of genes appearing within chromosomes that are not valid, it is assumed 
that the length of the chromosome (the number of genes) must be slightly longer relative 
to the number of containers within the bay. Experiments have shown that the number of 
genes in a chromosome is determined by multiplying the number of containers stacked in 
the bay by the number 10. Thus, if the bay consists of five containers, the number of genes 
in a chromosome is 50. With this chromosome length, each CRP within the test set was 
successfully resolved. When talking about the quality of an individual solution 
(chromosome), only the number of applied genes represents the number of reshuffles 
(container relocations) within the bay, i.e., the value of the fitness function. The complete 
process of fitness function calculation for this problem is presented in the next subsection. 

4.2.2. The Fitness Function 
As earlier mentioned, the fitness function is the most important part of the genetic 

algorithm because it represents the optimization problem that has to be solved. The 
quality of each chromosome in the genetic algorithm process is evaluated with the fitness 
function. In terms of the CRP, the fitness function is defined by the following equation:  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = #𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (1) 

where #𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠  is the number of all relocations of blocking containers while 
retrieving the containers based on their priorities. The smaller the value of the fitness 
function, the better the potential solution (chromosome). The pseudo code for the fitness 
function calculation of our method is shown in Algorithm 2. 

  

Figure 6. The relocation of container 4 with an example of a fully occupied stack.

Similarly, if the next gene within the chromosome that represents the next location
for the current blocking container has the value of the stack in which the current blocking
container is already located, as in the fully occupied stack above, the first valid gene within
the chromosome is used to perform the relocation of the blocking container. Considering
the possibility of genes appearing within chromosomes that are not valid, it is assumed
that the length of the chromosome (the number of genes) must be slightly longer relative
to the number of containers within the bay. Experiments have shown that the number of
genes in a chromosome is determined by multiplying the number of containers stacked
in the bay by the number 10. Thus, if the bay consists of five containers, the number of
genes in a chromosome is 50. With this chromosome length, each CRP within the test
set was successfully resolved. When talking about the quality of an individual solution
(chromosome), only the number of applied genes represents the number of reshuffles
(container relocations) within the bay, i.e., the value of the fitness function. The complete
process of fitness function calculation for this problem is presented in the next subsection.

4.2.2. The Fitness Function

As earlier mentioned, the fitness function is the most important part of the genetic
algorithm because it represents the optimization problem that has to be solved. The quality
of each chromosome in the genetic algorithm process is evaluated with the fitness function.
In terms of the CRP, the fitness function is defined by the following equation:

f itness = #relocations (1)

where #relocations is the number of all relocations of blocking containers while retrieving
the containers based on their priorities. The smaller the value of the fitness function,
the better the potential solution (chromosome). The pseudo code for the fitness function
calculation of our method is shown in Algorithm 2.
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Algorithm 2. Pseudo code of fitness function calculation.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 24 
 

where #𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠  is the number of all relocations of blocking containers while 
retrieving the containers based on their priorities. The smaller the value of the fitness 
function, the better the potential solution (chromosome). The pseudo code for the fitness 
function calculation of our method is shown in Algorithm 2. 

 

Algorithm 2. Pseudo code of fitness function calculation. 

1 Procedure fitnessFunction 
 Data:  T—the number of tiers within yard bay; S—the number of stacks within yard bay; 
   CN—number of containers within the yard bay; GN—number of genes within the chromosome; 
   YB—the matrix of dimension |T| * |S| representing the containers’ positions within the yard bay; 
   C—the vector of dimension |GN| representing the chromosome 
 Result: F—the value of fitness function for evaluated chromosome C 
2 IGC      0; // IGC—the Index of the next applied Gene within the Chromosome 
3 RN      0; // RN—the number of additional relocations (reshuffles) 
4 for k      1 to CN do 
5  indT      −1; indS      −1; // indT (indS)—tier (stack) index of the next retrieving container 
6  for i      0 to |T − 1| do 
7   for j      0 to |S-1| do 
8    if YBi,j = k then 
9    indT      i; indS      j; 
10  for i      0 to |indT| do 
11   if YBi,indS ≠ 0 then  
12    CC      YBi,indS;  // CC—the Current blocking Container 
13    find      false; // find—indicate when the appropriate stack for relocating container is found 
14    while ~ find do  
15    relS      CIGC; // relS—the (stack) value of gene within the Chromosome at index IGC  
16    if relS ≠ indS then 
17     if YB0, relS = 0 then 
18    IGC      IGC + 1; find      true; RN      RN + 1; 
19   maxT      0; //the max tier index in the stack where the relocated container will be placed 
20     for ii     0 to |T − 1| do  
21      if YBii, relS = 0 then  
22      maxT      ii; 
23     YBmaxT, relS          CC; YBi,indS      0; 
24     else IGC      IGC + 1;  
25    else IGC      IGC + 1; 
26 F      RN 

An example of the fitness function calculation for CRP and particular chromosomes 
can be seen in Figures 7–9. First, the container with priority 1 must be retrieved. Container 
6 blocks container 1, so it must be relocated. Container 6 would be relocated on the 
position corresponding to the value of the first gene in the chromosome. The value of the 
first gene is 2, so container 6 is relocated to stack 2 (Figure 7, part #2). The value of the 
fitness function is now equal to 1. Container 1 can be retrieved and shipped further (Figure 
7, part #2) after the relocation of container 6. Container 2 is next for retrieving. Since this 
container is not blocked by any container, it can be retrieved immediately (Figure 7, part 
#3). Now, the container with priority 3 must be retrieved. Containers 4 and 5 block 
container 3, thus they must be relocated. First, the relocation of container 4 must be 
performed. The next not used gene within the chromosome has value 3 indicating that the 
following relocation must be made on stack 3. As stack 3 is fully occupied, this relocation 
cannot be made thus this gene is skipped (Figure 7, part #4). The next available gene has 
value 2, thus container 4 is relocated to stack 2 (Figure 7, part #5). The blocking container 
5 is relocated to stack 1 (Figure 7, part #6). Now, the fitness function is equal to 3. 
Currently, there are no containers blocking the retrieval of containers with priorities 3, 4, 
5, and 6, so they can be shipped further without making any relocations (Figure 8, parts 
#7, #8, #9, and #10).  

An example of the fitness function calculation for CRP and particular chromosomes
can be seen in Figures 7–9. First, the container with priority 1 must be retrieved. Container
6 blocks container 1, so it must be relocated. Container 6 would be relocated on the position
corresponding to the value of the first gene in the chromosome. The value of the first gene
is 2, so container 6 is relocated to stack 2 (Figure 7, part #2). The value of the fitness function
is now equal to 1. Container 1 can be retrieved and shipped further (Figure 7, part #2)
after the relocation of container 6. Container 2 is next for retrieving. Since this container
is not blocked by any container, it can be retrieved immediately (Figure 7, part #3). Now,
the container with priority 3 must be retrieved. Containers 4 and 5 block container 3, thus
they must be relocated. First, the relocation of container 4 must be performed. The next
not used gene within the chromosome has value 3 indicating that the following relocation
must be made on stack 3. As stack 3 is fully occupied, this relocation cannot be made thus
this gene is skipped (Figure 7, part #4). The next available gene has value 2, thus container
4 is relocated to stack 2 (Figure 7, part #5). The blocking container 5 is relocated to stack 1
(Figure 7, part #6). Now, the fitness function is equal to 3. Currently, there are no containers
blocking the retrieval of containers with priorities 3, 4, 5, and 6, so they can be shipped
further without making any relocations (Figure 8, parts #7, #8, #9, and #10).

Container 8 blocks container 7 and therefore must be relocated. Container 8 is moved
to the position corresponding to the value of the first unused gene within the chromosome.
The value of the first unused gene is 0, so container 8 is relocated in stack 0 (Figure 8, part
#11). The value of the fitness function is now equal to 4. Containers 7 and 8 can now be
retrieved and shipped further (Figure 8, part #12 and Figure 9. Part #13). The container
with priority 12 blocks the retrieval of container 9, and so has to be relocated according to
the value of the next available gene.
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The value of the next available gene is 3, so the relocation cannot be performed because
container 12 is already positioned in stack 3 (Figure 9, part #14). The next gene is equal to
2, so container 12 is relocated into stack 2 (Figure 9, part #15). The fitness function value
is now equal to 5, and container 9 can now be retrieved and shipped further (Figure 9,
part #16). The container with priority 11 blocks the retrieval of container 10, so it must be
relocated according to the value of the next available gene, which equals 1. Consequently,
container 11 is relocated to stack 1 (Figure 9, part #17), and the value of the fitness function
is increased by 1 (equal to 6). Now, all remaining stacked containers (10, 11 and 12) can be
retrieved according to their priorities (Figure 9, part #18).
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In the end, the fitness function is equal to 6 for this example chromosome. In order
to obtain better and better chromosomes during the evolution process within the genetic
algorithm, selection, crossover and mutation must be performed.
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4.2.3. Selection

As stated before, selection is the process of choosing the better chromosomes from the
previous generation that will be part of the next generation. On those selected chromosomes,
the genetic operators (crossover and mutation) are performed in order to obtain even better
chromosomes, which are a possible solution to the optimization problem. In this way,
natural selection is simulated, where the better individuals survive. During the selection
process, the best chromosomes of the previous generation are largely selected. However,
it is useful to select a smaller percentage of less good chromosomes. There is always a
possibility that such chromosomes contain some good genes (a good part of the solution)
that can help to create better chromosomes in the future through crossover and mutation
processes. There are different types of selection [44], but in this optimization problem
of determining the sequence of the best relocation positions to minimize the number of
relocations, deterministic tournament selection is chosen. In deterministic tournament
selection, k chromosomes are randomly selected from the existing chromosomes. The
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chromosome with the highest fitness function value is selected in the next generation.
This process is repeated n times since the next generation consists of n chromosomes.
When deterministic tournament selection is used, the chromosome with the highest fitness
function value in the previous generation may not be included in the next generation.
Therefore, the elitism rule is applied in this selection procedure. The elitism rule always
selects the chromosome with the highest fitness function for the next generation.

4.2.4. Genetic Operators

The genetic operators, crossover and mutation, are applied to the chromosomes
selected in the selection procedure. The crossover operator crosses the genes of two
selected chromosomes. In this way, two new chromosomes are created, each consisting
of mixed genes from their parents. In this paper, the crossover with one crossover point
is used, because it performs faster than any other type of crossover. Before performing
the crossover, the crossover point must be determined. If the chromosome consists of n
genes, the crossover point has a value in the range between 2 and n − 1. The value of the
crossover point is determined by a random function. The pseudo code for the crossover
process of our method is shown in Algorithm 3.

Algorithm 3. Pseudo code of crossover process.
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1 Procedure crossover 
 Data:  C1—the vector of dimension |GN| representing the chromosome; 
   C2—the vector of dimension |GN| representing the chromosome; 
   GN—number of genes within the chromosome; 
 Result: X—the vector of dimension 2 containing two chromosomes after crossover process 
2 C1’      Vector (GN);  C2’       Vector (GN); 
3 crossPoint       randomNumber (1, GN − 2); // crossPoint—the value of gene index from where the crossover begins 
4 for i      0 to crossPoint do 
5  C1’i      C1i; 
6  C2’i      C2i; 
7 for i      crossPoint+1 to |GN − 1| do 
8  C1’i      C2i; 
9  C2’i      C1i; 
10 X      {C1’, C2’}; 

An example of the crossover procedure is shown in Figure 10.  
An example of the crossover procedure is shown in Figure 10.
At the beginning, chromosome1 has the values (3, 1, 0, 3, 0, 1, 3, 2, 0, 1) and chromosome2

has the values (0, 2, 3, 0, 2, 2, 2, 1, 3, 0). The crossover point is assigned the value of 4
(crossover is performed for genes on indices 5 to 9) by using a random number function.
After performing the crossover operator between these chromosomes, the genes at indices
5 to 9 are interchanged, resulting in two new chromosomes: chromosome1′ with values (3,
1, 0, 3, 0, 2, 2, 1, 3, 0) and chromosome2′ with values (0, 2, 3, 0, 2, 1, 3, 2, 0, 1).

The mutation operator mutates the genes of a chromosome (solution), i.e., changes
the values of some genes within the chromosome to obtain a better chromosome than
the original one. Before the mutation is performed, the index of the gene(s) that will be
mutated must be defined. If the chromosome consists of n genes, the index can have a
value between 1 and n. In addition, the probability of mutation must be defined (usually
the probability is less than 5%). The pseudo code for the mutation process of our method is
shown in Algorithm 4.
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1 Procedure mutation 
 Data:  S—the number of stacks within yard bay; GN—number of genes within the chromosome; 
   MP—the rate of mutation; C—the vector of dimension |GN| representing the chromosome; 
 Result: mutatedC—the vector of dimension |GN| representing the mutated version of chromosome; 
2 for i      0 to |GN − 1| do 
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Figure 11 shows an example of a mutation process. At the beginning, the chromosome
has the values (3, 1, 0, 3, 0, 1, 3, 2, 0, 1). The index of the mutated gene gets the value 4 by
using random number function. After performing the mutation operator on the mutated
gene, the chromosome’ has the values (3, 1, 0, 3, 3, 1, 3, 2, 0, 1).
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What is important to emphasize, after mutation and crossover, is that all generated
chromosomes remain feasible as potential solutions for the current CRP that is being solved.
As stated before, the length of the chromosome (the number of genes) must be slightly
longer relative to the number of containers within the bay considering the possibility of
genes appearing within chromosomes that are not valid. In this way, any chromosome
obtained by mutation, crossover or random generation remains feasible as a potential
solution to the current CRP.

5. Results and Discussion

The experiment was run on a 64-bit Windows 10 operating system with an Intel®

Core™ i5-8265U CPU 1.60 GHz processor and 8 GB of RAM. The method described above
was implemented in Java using the integrated development environment (IDE) NetBeans
11.3. Additionally, the Java Genetic Algorithm and Programming (JGAP) library [45] was
used to implement the genetic algorithm in this programming procedure. The method was
tested with different parameter values within the genetic algorithm to find the best possible
setup of the genetic algorithm to obtain the highest quality solutions in the shortest possible
time. The best possible setting of the genetic algorithm had the following parameter values:
the number of generations was 300, the size of the population of each generation was
100, the mutation probability was 0.05, and elitism (the best possible solution from the
previous generation is automatically included in the next generation) was set, and the
percentage of chromosomes from the previous generation that is included in the next
generation was 0.5. The small number of chromosomes in each population (100) allows
very fast execution of the genetic algorithm. However, to obtain high quality solutions
(chromosomes), the number of generations must be increased, as well as the percentage
of the crossover probability which, in addition to mutation, allows a diverse searching of
solution space for CRP. Half of the chromosomes (solutions) of the previous generation
are included in the process of the next generation of genetic algorithm, so such selection
ensures that quality solutions are included in the search process along with the newly
randomly generated solutions of the next generation. All parameters of genetic algorithm
and their values are given in Table 1.
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Table 1. The genetic algorithm setup for resolving CRPs.

Parameter Value

Number of generations 300
Size of population 100

Mutation rate 0.05
Number of genes within the chromosome 10 × number of containers in CRP
Percentage of selected chromosomes from

previous generation 0.5

Elitism set

The method was tested on a test set of restricted CRPs described in [24]. As mentioned
before, this test set consists of a large set of CRPs considering different bay sizes. All CRPs
in this test set contain the maximum possible number of containers (maximum occupancy)
within the bay considering the bay size of a given CRP. The maximum occupancy makes it
difficult to solve the problem given the large number of blocking containers, so this test set
is the most relevant test set for evaluating models that solve the CRP. The total number of
containers stacked in the bay is obtained from the expression in [24]:

N = W × H − (H − 1) (2)

where N is the total number of containers stacked within a bay, W is the total number
of stacks (columns) in a bay, and H is the total number of tiers in a bay. The maximum
occupancy is obtained by subtracting the (H − 1) from W × H. The value (H − 1) is
the largest number of relocations to retrieve one container if a stack is full (contains H
containers) and the container, that needs to be retrieved, is blocked by (H − 1) containers
within that stack, i.e., it is positioned at the bottom of the stack. In this way, there is always
a sufficient number of free container positions (slots) to which blocking containers can
be relocated.

The experiment was performed for the following bay sizes: 3 × 7–6 × 7, 3 × 6–6 × 6,
3 × 5–6 × 5, 3 × 4–6 × 4, 3 × 3–6 × 3. The test set in [24] consists of 40 different problem
instances for each bay size. The maximum tested bay size (6 × 7) corresponds to the
specifications of the latest technological RTG cranes in regard to the actual sizes of bays.
Therefore, the tiers’ parameter assumes a value from 3 to 6 while the stacks’ parameter
assumes a value from 3 to 7. The results obtained with the proposed method were compared
with the other best models applied to this test set. In Table 2, the results obtained by the
proposed method are compared with those obtained by the other authors who achieved
the most significant results with this test set. Furthermore, we have implemented the linear
programming model for CRP to get optimal results for small bay sizes (last column in
Table 2). As stated before, CRP is NP-hard problem. Hence, using the linear programming
model to resolve CRP, we managed to get results for bay sizes 3 × 3, 4 × 3, 3 × 4, 4 × 4,
3 × 5, and 5 × 3 in which there are no more than 15 containers inside the bay. The obtained
results are the optimal results for these bay sizes. Additionally, the process of obtaining the
results with linear programming model was very slow even for such small bay sizes.

The highlighted results (emboldened) indicate the best results obtained for each
test instance considering the different sizes of the bay. It can be seen that the proposed
method achieves the best or the second best results for each test instance along with
the solution proposed in [24]. For the bay sizes 3 × 3, 4 × 4, 4 × 5 and 4 × 7, the
proposed method achieved the best results, even better than [24]. By introducing the linear
programming model, we also proved that our method gives optimal results for small bay
sizes. Considering that for large bay sizes, where linear programming cannot be used, there
are currently no better results than those obtained by the method from [24] or our new
method, we can conclude that our method solves CRPs very successfully.
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Table 2. The results of the CRP test set [24] on real sizes of bays achieved by the proposed method
and the other best models of different authors.
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3 × 3 7 3.58 3.42 3.42 3.42 3.38 3.38 3.38 3.30 3.30
4 × 3 9 6.67 6.10 5.82 5.82 5.95 5.67 5.85 5.67 5.67
5 × 3 11 10.60 9.80 9.10 9.10 8.70 8.40 8.93 8.40 8.40
6 × 3 13 15.40 13.60 12.97 12.77 12.30 11.50 12.30 11.50 -

3 × 4 10 5.67 5.03 4.95 4.95 4.95 4.85 4.98 4.85 4.85
4 × 4 13 10.50 9.05 8.75 8.72 8.57 8.43 8.55 8.42 8.42
5 × 4 16 16.30 14.50 13.12 13.02 13.17 12.20 12.63 12.25 -
6 × 4 19 23.20 19.10 17.15 17.05 16.92 15.60 16.93 15.62 -

3 × 5 13 6.95 5.90 5.75 5.75 5.80 5.75 5.80 5.75 5.75
4 × 5 17 14.40 12.20 11.40 11.35 11.40 11.00 11.35 10.98 -
5 × 5 21 21.00 18.10 17.07 16.95 16.65 15.60 16.75 15.60 -
6 × 5 25 31.80 25.60 23.92 23.52 23.57 21.10 22.60 21.15 -

3 × 6 16 8.95 7.92 7.72 7.72 7.85 7.65 7.88 7.65 -
4 × 6 21 16.00 13.20 12.67 12.55 12.60 12.00 12.48 12.02 -
5 × 6 26 26.90 22.60 20.60 20.42 20.52 19.30 20.32 19.35 -
6 × 6 31 41.20 32.60 29.02 28.77 28.57 26.10 28.50 26.15 -

3 × 7 19 11.50 10.10 9.02 9.05 9.17 8.95 9.15 8.95 -
4 × 7 25 19.40 20.10 16.35 16.45 16.07 15.50 16.13 15.48 -
5 × 7 31 33.00 30.90 23.15 22.92 22.70 21.40 22.60 21.42 -
6 × 7 37 45.80 45.00 34.40 34.07 34.07 31.00 33.55 31.62 -

Total sum of average
relocations 368.82 324.82 286.35 284.37 282.91 265.38 280.66 266.04

Although the overall results (total sum of average relocations) achieved by the pro-
posed method (266.04) are slightly worse than the method in [24] (265.38), these overall
results are very close to each other (Table 2 and Figure 12). Compared to the results ob-
tained in [24], the proposed method is worse by 0.3%. Therefore, approximately less than
1 additional container relocation were performed considering all solutions detected by our
method and comparing these solutions to the best model solutions. Considering that there
are 20 different test sets with 40 test instances, the total increase of only one additional
container relocation is negligible. Moreover, the results of these two techniques are much
better than the results of other best methods [17,29,33,35,37,38]. Considering the obtained
results, the best third method was our previous model proposed in [17] with an overall
result of 280.66. It can be seen that the method proposed in this paper has significantly
improved the quality of the solutions found for the CRP test set [24] compared to the
previous method. Our new method is for 5.5% better than the previous method, which
favored the relocation of blocking containers to the nearest available stacks.
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We also confirmed this claim using the statistical t-test, which is used to compare the
means of two sample groups. We ran 50 simulations for all test sets of CRP for our previous
method [17] and the method proposed in this paper. The null hypothesis (H0) for these two
sample groups was that the difference between the means of these groups is zero. Since the
t-value was 2218.5, the null hypothesis is definitely rejected. Higher values of the t-value
indicate that there is a large difference between the two sample groups, as shown by the
results in Table 1 (266.04 vs. 280.66).

As mentioned earlier, our previous method introduces four rules for container reloca-
tion, one of which applies to the relocation of the next blocking container depending on the
random selection process within the genetic algorithm. The drawback of this method was
favoring container relocation to the nearest possible stack satisfying the applied relocation
rule, thus optimizing the horizontal movement of reshuffled containers. Since the main
objective of the CRP test set in [24] is to minimize the number of reshuffles (relocations of
blocking containers), in certain situations, if the reshuffled container is not relocated to the
nearest possible stack (column), the total number of relocations will be smaller at the end. In
Figure 13, an example of a different solution of container relocation, between our previous
method [17] and the proposed method, is shown. As stated before, our previous method
proposes four different relocation rules of blocking containers (Rule R1—relocate the con-
tainer to the nearest stack in which all containers will be retrieved later than the blocking
container, Rule R2—relocate the container to the nearest empty stack, Rule R3—relocate the
container to the nearest and the lowest stack, and Rule R4—Relocate the container to the
nearest stack that is not full to the maximum stacking height). According to Figure 13, the
container with priority 4 must be retrieved next. Given that container 9 blocks container
4, it must be relocated. Considering four rules proposed in [17], only rules R3 and R4
are applicable for relocation of the container 9. As the method favors the nearest possible
stack, the container with priority 9 will be relocated in stack with index 1 (s1) (Figure 13b).
However, this is not the best possible option because, when the container 5 would have to
be retrieved, the container 9 should be relocated over the container 7 or container 6 (i.e., the
nearest stack). Thus, there is an additional relocation move that slows down the process
of retrieving containers. Our newly proposed method is not restricted with any rule, so
the genetic algorithm can randomly determine the stack with index 3 as the position for
relocating container 9 (Figure 13c). In this way, containers 4, 5, 6, and 7 can be retrieved
without making additional relocations resulting in a faster retrieval process.
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and the proposed method: (a) Current situation within the yard bay; (b) the situation within the yard
bay after applying one possible rule proposed in [17]; and (c) the situation within the yard bay after
applying one relocation of our newly proposed method.

In addition, a comparison of the results of our previous method (GA with rules) and
our new method was performed for all 40 instances of the large test set for bay size 6 × 7
(Figure 14). It can be seen that for each instance of the test set, the new method (blue line)
finds a solution with less additional relocations than our previous method (orange line).
Finally, this is already clear in Table 2, which shows the overall result for the 6 × 7 test set
(new method—31.62 vs. GA with rules—33.55).
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Figure 14. A comparison of the results of method GA with rules and our new method for all 40
instances of the test set for bay size 6 × 7.

Figure 15 shows the average computational results (in seconds) of our new method
for solving CRP of different bay sizes (from 3 × 3 to 6 × 7). Our method determines the
solutions fast enough. Of course, the longest time needed to determine the solution was for
the 6 × 7 dock size and was 13 s on average. From this we can conclude that the dock size
does not affect the performance of our new method too much.
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Considering the results obtained with the method proposed in this paper, we proved
that the quality of resolving CRP can be further improved.

6. Conclusions

Today, more than 90% of global trade is carried out by sea, which is why seaports
play a very important role in world transport. Container transport is one of the most
important modes in maritime transportation. As container traffic increases every year, con-
tainer transportation requires near perfect coordination between all stakeholders, working
resources and processes within the entire container transportation system to minimize
transit time, delivery time reliability and consequently cost as the main factor for efficient
container transportation.

This paper deals with the restricted CRP, which is one of the most important optimiza-
tion problems in the stacking area of the port container terminal. There is an increasing
number of containers that need be stacked in seaports before further shipping. In order
to minimize the retrieval time of all containers, that need to be shipped from the stack
in the specified order, the relocation of blocking containers must be done in a way that
minimizes the number of additional movements (reshuffles) of these blocking containers
that stay in the stacking area (it is not yet their turn to ship). Therefore, the crane operation
schedule must be optimized to minimize the number of reshuffles, i.e., shorten the time
to retrieve the blocking containers, as well as to maximize the utility of each crane operat-
ing in the stacking area. Since the restricted CRP optimization problem is NP-hard, it is
difficult to find a good solution for retrieving all containers with a minimum number of
unproductive reshuffles.

In this paper, a new method based on genetic algorithm was proposed to resolve the
restricted CRP at the stacking area of a port container terminal. The experiment of the
proposed method was conducted on test cases with 20 various bay sizes (different numbers
of tiers and stacks), each of which consists of 40 different test instances. These test instances
are the most complex test instances that exist for evaluating models for solving restricted
CRPs, since all instances of this test set contain the maximum possible number of containers
(maximum occupancy) within the bay considering the bay size of particular CRP test case.

The experimental results prove that the proposed method successfully determines
the optimal relocation of blocking containers in order to minimize the total number of
relocations within the bay. For all test cases, regardless of the size of the bay, the proposed
method proved to be the best or second best solution compared to the well-known solutions
of other authors in this field of research.
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The only limitation of this method is that it is not possible to verify the quality of
the solutions obtained for large test sets (e.g., yard bay with a size of 6 tiers and 6 stacks).
Nevertheless, we can assume that the method finds excellent solutions since it has been
proven that it gives optimal results for small test sets. For large test sets, this method
achieves the best or second-best results compared to other relevant models or methods that
solve CRP.

Considering the excellent results obtained by using a genetic algorithm as a major
component of the proposed method, we assume that there is a great potential for using
nature inspired metaheuristics to solve the restricted CRP. Therefore, in future work, we
will focus on improving the method by using other nature-inspired algorithms such as
Lion Optimization algorithm [46] or Red deer algorithm [47]. We will try to improve the
proposed method so that it is capable of solving 3D CRPs.
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and L.M. (Lovro Maglić); writing—original draft preparation, M.G., L.M. (Livia Maglić), T.K. and
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17. Maglić, L.; Gulić, M.; Maglić, L. Optimization of Container Relocation Operations in Port Container Terminals. Transport 2020, 35,
37–47. [CrossRef]
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