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ABSTRACT 
 

The study researches the operational performance of the DGs (diesel generators) and the 

PMS (power management system) on board an offshore drilling rig. The focus of this study 

is the reduction of running hours, fuel consumption and CO2 emissions of the DGs while 

increasing the reliability, stability and performance of the power generation system on 

offshore jackup drilling rigs. 

To estimate the running hours and the fuel consumption, a Pythion simulation model is 

developed. The model allows the author to virtually run the engines and observe the engine 

behaviour. By running simulations under different operational parameters, the author can 

compare the outcomes of each simulation. Comparison of outcomes allows the author to 

determine the optimum parameters for operating the PMS. 

The study provides an insight into a specific problem in offshore oil and gas drilling 

associated with tripping and POOH (pulling out of the hole) operations. The phenomena is 

observed and a proposed solution to the problem is given in the form of adjustment of the 

operational parameters. 

The annual savings in the form of reduced running hours, reduced fuel consumption and 

reduced CO2 emissions are provided. 

Keywords: diesel generator, drilling, power management system, Python, tripping 

 

SAŽETAK 
 

U ovom radu istražene su karakteristike rada Diesel generatora i PMS-a (sustav upravljanja 

energijom) na platformi za podmorno bušenje nafte i plina. Glavni cilj istraživanja je 

redukcija radnih sati i potrošnje goriva generatora, uz prirast pouzdanosti, stabilnosti i učinka 

generatora. 

Razvijen je Python program kojim se može simulirati rad generatora u svrhu estimiranja 

potrošnje goriva i radnih sati. Provođenje simulacija pod različitim operativnim parametrima 

rezultira različitim estimiranim vrijednostima potrošnje goriva i radnih sati. Usporedba 

estimiranih vrijednosti omogućuje određivanje optimalnih parametara za rad generatora. 
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Istraživanje prikazuje poteškoće u radu generatora tijekom izvođenja specifičnih operacija 

bušenja nafte i plina. Ponuđeno je rješenje koje otklanja poteškoće u radu generatora. 

Predstavljene su godišnje uštede radnih sati, potrošnje goriva i CO2 emisija. 

Ključne riječi: diesel generator, bušenje, sustav upravljanja energijom, Python, tripping  
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1. SYSTEM DESIGN 
 

Note that an offshore jackup drilling rig is used as a case study for this thesis. Due to their 

fixed position, and a hull that is elevated above the surface of the sea, jackup rigs in general 

operate under less dynamic loads with lesser chance and less severe consequences of 

blackouts than DP controlled floating objects. 

Key system design is briefly discussed. 

 

1.1. MAIN DIESEL GENERATOR ENGINES 
 

The power management system on which the study is based consists of five identical main 

diesel generator engines (DGs) nominally rated at 1830 ekW, 690 VAC, 60 Hz. Diesel 

generator engines work in a standardised load sharing, parallel mode [1]. 

 For the purpose of this study, only the key characteristics of the DGs are mentioned. 

Table 1. Load, power and fuel consumption for the 1830 ekW marine MDG 

PERCENT LOAD [%] ENGINE POWER [BHP] FUEL CONSUMPTION [GAL/HR] 

100 2,588 124.6 

90 2,329 113.9 

80 2,071 102.5 

75 1,941 96.4 

70 1,812 90.5 

60 1,553 79.0 

50 1,294 66.9 

40 1,035 55.0 

30 776 43.5 

25 647 38.0 

20 518 32.5 

10 259 21.9 

 

Source: Technical information portal (2020, June.) CAT. Available at 

https://www.cat.com/en_ZA/additional-product-information/product-families/technical-

informationportal.html  (26. 03. 2020.) [2] 

 

Each of the DGs is controlled by an automation system that remotely starts and stops the 

DGs depending on the power requirement in the facility. When the demand for power 

increases the system will start an additional engine. When the demand for power decreases 

the system will stop the engine that was last started. 

 

https://www.cat.com/en_ZA/additional-product-information/product-families/technical-informationportal.html
https://www.cat.com/en_ZA/additional-product-information/product-families/technical-informationportal.html
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1.2. AUTOMATION SYSTEM 
 

The automation system is responsible for remote control of the DGs. The system consists of 

numerous electronic components, PLCs and a central HMI station. For this study, the 

hardware of the system is not examined. Instead, the focus is on the operation principle, data 

logging and control features of the system. 

Key features of the system are presented: 

• PMS is used to automatically start and stop generator engines, depending on load 

percentages and time spent in certain load zones. 

• PMS automatically starts a generator engine when the demand for power increases. 

This is known as the load-dependent start [3]. 

• PMS automatically stops a generator engine when the demand for power decreases. 

This is known as the load-dependent stop [4].  

• In addition, the system offers a comprehensive data logger that stores many physical 

quantities measured on DGs, switchboards and other instrumentation. These stored 

measurements serve as the basis for the attempt to develop a PMS simulator program 

in Python and to run simulations in order to determine the optimal parameters for 

operating the engine room. 
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2. POWER MANAGEMENT SYSTEM OPERATION PRINCIPLE 
 

PMS handles many controls and monitoring options, but in this study the focus is on two 

key features: 

• Load dependent start 

• Load dependent stop 

 

2.1. LOAD DEPENDENT START 
 

Load-dependent start is a process of automatically starting an additional engine when the 

power requirements increase and the engines that are already running cannot cope with the 

power demand. 

When the demand for power increases the PMS will start an additional engine. 

The load dependent start is achieved via two interdependent parameters: 

• START LIMIT [%] 

• START TIME [s] 

When an engine continuously runs at load higher than the value of the START LIMIT 

parameter, for a period equal to the value of the START TIME parameter, a new engine will 

be started. If the load of the engine drops below the START LIMIT parameter, the starting 

of the additional engine will be cancelled.  

For each consecutive second spent at load higher than the value of the START LIMIT 

parameter, a countdown from the value of START TIME to zero will be engaged. Should 

the countdown reach zero, a command to start the additional engine will be issued by the 

PMS. Should the load of the engine drop below the value of the START LIMIT parameter, 

a countdown will be reset back to the original value and the starting will be cancelled. 

If the engine load is below the value of the START LIMIT parameter, no countdown will 

commence, and no additional engines will be started. 

Example of a load dependent start: 
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Figure 1. Example of a load dependent start 

Source: Created by the author using the matplotlib library 

Figure 1 shows an example of an automated starting of DG2 based on a load dependent start 

and the following parameter values: 

START LIMIT = 85% 

START TIME = 10 seconds 

The graph is analysed according to the numbers circled in red: 
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1. DG1 increases load from approximately 80% to approximately 95%. DG1 now runs 

at load higher than the START LIMIT parameter (95% > 85%). 

2. Countdown from 10 to zero is initiated. DG1 stays above the START LIMIT 

parameter for 10 consecutive seconds and the countdown to zero is reached. At this 

time, an automatic start of DG2 is initiated by the PMS. 

3. With a warm-up delay of approximately 100 seconds, DG2 synchronises and starts 

load sharing. Mean load is established at approximately 50%. Warm-up delay is 

associated with a pre-lube cycle, build-up of the starting air, the time for diesel to 

ignite, etc. [5]  

 

2.2. LOAD DEPENDENT STOP 

 

Load-dependent stop is a process of automatically stopping the engine that was last started 

when the demand for power decreases and the engines begin to run at undesirably low load. 

When a demand for power decreases the PMS will stop an engine, unless exactly one engine 

is running. 

The load dependent stop is achieved via two interdependent parameters: 

• STOP LIMIT [%] 

• STOP TIME [s] 

The following condition must be satisfied for the load-dependent stop to become active: 

𝑚 ∗ 𝐿

𝑚 − 1
< STOP LIMIT  

 

Where: 

• m = the number of running engines 

• L = load per engine 

When an engine continuously runs at load that satisfies the condition above, for a period 

equal to the value of the STOP TIME parameter, the last engine that was started will be 
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unloaded and stopped. If the load of the engine increases and the condition is not satisfied, 

the stopping of the engine will be cancelled.  

For each consecutive second spent at load that satisfies the condition, a countdown from the 

value of STOP TIME to the value of zero will be engaged. Should the countdown reach zero, 

a command to stop the last started engine will be outputted. Should the load of the engine 

change in such a way that the condition is not satisfied, a countdown will be reset back to 

the original value and the stopping will be cancelled. 

If the engine load does not satisfy the condition, no countdown will commence and no engine 

will be stopped. 

Example of a load-dependent stop: 
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Figure 2. Example of a load dependent stop 
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Source: Created by the author using the matplotlib library 

Figure 2 shows an example of an automated stopping of DG3 based on the load-dependent 

stop and the following parameter values: 

STOP LIMIT = 71% 

STOP TIME = 1599 seconds 

The graph is analysed according to the numbers circled in red. Note that in this example 

three engines are running. 

1. DG1, DG2 and DG3 decrease load from approximately 48% to approximately 42%, 

entering the zones for which the following condition is true: 

𝑚 ∗ 𝐿

𝑚 − 1
< STOP LIMIT  

 Where: 

• m = the number of running engines 

• L = load per engine 

When the load equals 42% and three engines are running, the calculation gives an 

estimated mean load of 63% for two running engines, satisfying the condition for 

countdown (64% < 71%). 

2. Countdown from 1599 to zero is initiated. Both DG1, DG2 and DG3 stay below the 

STOP LIMIT for 1599 consecutive seconds and the countdown to zero is reached. 

At this time, an automatic stop is initiated from the PMS. 

3. DG3 is unloaded, while DG1 and DG2 are ramped-up to compensate for the power 

previously delivered by DG3. DG3 reaches zero load and is disconnected, while DG1 

and DG2 continue load sharing. Mean load is established at approximately 65%. 

At 65% load, the system is balanced and no load-dependent starting or stopping will 

commence. Load of 65% is lower than the START LIMIT parameter (65% < 85%) so a load-

dependent start is not required. Likewise, the condition for load dependent stop would give 

an estimate of 130% per engine in case one fewer engine was running, so a load-dependent 

stop is not required either. 

Example of a combined load dependent start and stop: 



9 

 

 

Figure 3. DG1, DG2, DG3 load dependent start and stop 

Source: Created by the author using the matplotlib library 
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Figure 3 displays a line graph of DG1, DG2 and DG3 load over a period of 40000 seconds. 

Early time is spent with DG1 and DG2 running between 70% and 80%, while DG3 is offline. 

At this time, the system is balanced and there is no requirement for a load-dependent start or 

stop. As the load increases above 85%, load-dependent start of DG3 is initiated. DG3 is 

ramped-up, while DG1 and DG2 are ramped down. After DG3 begins to load-share, mean 

load is established between 50% and 60%. After 30000 seconds, load drops below 50%, 

which results in a load dependent stop of DG3. DG3 is unloaded and disconnected, while 

DG1 and DG2 are ramped-up. Mean load is established around 70%. The system is balanced 

and there are no requirements for load-dependent starting or stopping. 

 

2.3. HIGH-LOAD START 

 

In addition to load-dependent starts and stops, the system also automatically starts an 

additional engine if the load on any of the engines becomes greater than 100% of their 

nominal capacity. In this case the control logic will be ignored, and a direct start command 

will be issued by the PMS regardless of the countdown. 

 

2.3.1. Operational parameters  

 

In the previous chapter the correlation between the operational parameters and the 

performance of the DGs is demonstrated. START LIMIT and STOP LIMIT values directly 

affect the PMS decision threshold, while the START TIME and STOP TIME values directly 

affect the countdown durations. By modifying the parameter values, a significant impact on 

the performance of the PMS and the DGs can be achieved. 

The goal is to explain how a change in one or more parameters affects the performance of 

the DGs and the drilling facility. In particular, the author is interested in reduction of running 

hours, reduced fuel consumption, reduced CO2 emission, stability of the Main SWBD 

voltage and frequency, reliability of power during peak demand by the drill-floor, 

establishing a healthy mean load per engine and reducing the stress on the switchgear. 
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Mentioned points of interest are dependent on the operational parameters of the PMS; thus, 

the goal of this study is to find the optimal parameters for balanced, safe, cost-effective, and 

efficient operation of the drilling rig. 

To test how a change in parameter values affects the performance of the rig, a Python model 

of the PMS that can virtually run the engines and help us determine the optimal parameter 

values is developed. 

The model is evaluated by running it against measured values and observing the behaviour 

of the model. Should the model prove accurate, the value of the total power, recorded over 

a duration of 55 consecutive days, will be used as an input to the model. Desired outputs will 

be the estimates of total fuel consumption, running hours, behaviours of starting and stopping 

sequences, times spent at high and/or low loads, etc. 

 

2.3.2. Commissioned and Modified values 

 

Before developing the Python program, the parameter values at the time of commissioning 

and at the time of data logging are clarified. 

The operational parameters used for load-dependent start and stop were set to the following 

values during the commissioning of the rig: 

start_limit = 80  # Given in [%]    
start_time = 10  # Given in [s]      
stop_limit = 70  # Given in [%]       
stop_time = 200  # Given in [s]     
 

However, during the time of data logging, the system was operating with the following 

values: 

start_limit = 85  # Given in [%]     
start_time = 15  # Given in [s]      
stop_limit = 71  # Given in [%]       
stop_time = 1599  # Given in [s]       
 

The reason for the change of the parameters and the significance of the change will be 

explained in the remainder of the study. 
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3. CLEAN-UP AND ERROR DETECTION ON THE DATASETS 
 

To perform correct data analysis and create a model that accurately mimic the PMS 

operation, the recorded data needs to be reviewed for errors. The following chapter describes 

the methodology of error review and cleaning of the data before it is stored in an SQLite 

database. 

3.1. FILE FORMAT 

 

The data is extracted in MS Excel file format. A typical file consists of more than 60000 

rows and 45 columns, containing the recorded physical quantities over a certain period. 

Physical quantities are recorded at a frequency of one row per second. Each row consists of 

the following values: 

• Timestamp 

• Total power [kW] 

• Available power [kW] 

• SWBD voltage [V] 

• Frequency [Hz] 

• Number of running engines 

Also, for each DG the following values are recorded: 

• Power [kW] 

• Load [%] 

• Reactive power [kVAr] 

• Phase factor [cos ] 

• Frequency [Hz] 

• Voltage [V] 

 

Figure 4. Representation of a typical XLS table containing recorded values 

Source: Created by the author using the MS Excel software 
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3.2. INITIAL ERROR TESTING 

 

Before writing a Python script for automatic error detection and clean-up of the data, 

familiarisation with the characteristics of a typical row containing an error is necessary.  

The Load of DG2 over time is plotted in matplotlib [6]. 

 

Figure 5. Incomprehensible plot of DG2 power over time 

Source: Created by the author using the matplotlib library 

 

An incomprehensible graph points to an error somewhere along the data. 
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The file is checked manually in Excel by plotting the time column: 

 

Figure 6. Plot of the time column in an XLS file 

Source: Created by the author using the MS Excel software 

 

Non-linear passage of time appears as a result of a faulty timestamp along the time column. 

The point is inspected manually: 

 

 

Figure 7. Row containing incorrect data 

Source: Created by the author using the MS Excel software 

 

By manually reviewing the data, an error is found in the form of an incorrect timestamp and 

zeros instead of recorded data points. By applying the same methodology, numerous rows 
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with the same characteristics are found, which leads to the development of a simple cleaning 

script written in Python. 

 

3.3. AUTOMATED CLEAN-UP SCRIPT 
 

The following part of the paper describes the code and logic behind the automated error 

detection and clean-up script written in Python. 

 

3.3.1. Automated reading of the XLS files 

 

# The pattern of scanning all the files with an .XLS extension. 
pattern = '*.XLS' 
xls_files = glob.glob(pattern) 
 

 

The list named xls_files contains the names of all the .XLS files in the project directory. The 

script opens and reads each of the files in the list. 

 

3.3.2. Automated accessing of each sheet of the XLS files 
 

sheets = pd.ExcelFile(xls_files[i]) 

for sheet in sheets.sheet_names: 
    print('Handling sheet: ' + str(sheet)) 

    xls = pd.DataFrame(pd.read_excel(xls_files[i], sheet_name=sheet, 

dtype={col: np.float16 for col in float16_cols}))  

 

The script accesses each sheet of each .XLS file. Each sheet is read as a Pandas DataFrame 

[7] data structure. Some columns are converted to a float16 format for reduced memory 

usage [8]. 

 

3.3.3. Determining incorrect timestamps 
 

 

xls['Int Time'] = pd.to_datetime(xls['Time']).astype(np.int64) 
error_rows = xls[np.abs(xls['Int Time'] - xls['Int Time'].mean()) > 2 * 
xls['Int Time'].std()].index.values 
xls = xls.drop(error_rows) 
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A new column named Int Time is created in the DataFrame. Timestamps from the default 

Time column are converted to an integer type for easier manipulation. This allows us to 

determine the mean and standard deviation of time and find an outlier in the form of an 

incorrect timestamp.  

If an absolute value of the difference of Int Time and the mean of Int Time is greater than 

the standard deviation of Int Time multiplied by 2, there is a high probability of an incorrect 

timestamp. 

Rows containing errors are then dropped. 

 

3.3.4. Determining duplicated rows 

 

if last_time is None: 

    last_time = xls.loc[xls.index[-1], 'Int Time'] 

    xls.to_sql('Engine_Room_Database', connection, if_exists='append', 
index=True) 

else: 
    try: 

        new_row = xls.index[xls['Int Time'] == last_time] 

        xls = xls[new_row[0]+1: -1] 
    except: 

        pass 

    last_time = xls.loc[xls.index[-1], 'Int Time'] 
    xls.to_sql('Engine_Room_Database', connection, if_exists='append', 

index=True) 

 

Since exporting of the recorded values was done daily, many of the exported files contain 

duplicated rows. 

 

The script compares the first value of the Int Time of the currently accessed sheet with the 

last recorded value of the Int Time of the previously accessed sheet. The script then slices 

the currently accessed sheet in such a way that only unique rows are added to the database. 

 

3.3.5. Full code for reading, cleaning, and inserting the data into the SQLite database 

 

for i in range(len(xls_files)): 
    print('Handling file: ' + str(xls_files[i])) 
    sheets = pd.ExcelFile(xls_files[i]) 
    for sheet in sheets.sheet_names: 
        print('Handling sheet: ' + str(sheet)) 
        xls = pd.DataFrame(pd.read_excel(xls_files[i], sheet_name=sheet, 
dtype={col: np.float16 for col in float16_cols})) 
        xls['Int Time'] = pd.to_datetime(xls['Time']).astype(np.int64) 
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        error_rows = xls[np.abs(xls['Int Time'] - xls['Int Time'].mean()) > 2 * 
xls['Int Time'].std()].index.values 
        xls = xls.drop(error_rows) 
        if last_time is None: 
            last_time = xls.loc[xls.index[-1], 'Int Time'] 
            xls.to_sql('Engine_Room_Database', connection, if_exists='append', 
index=True) 
        else: 
            try: 
                new_row = xls.index[xls['Int Time'] == last_time] 
                xls = xls[new_row[0]+1: -1] 
            except: 
                pass 
            last_time = xls.loc[xls.index[-1], 'Int Time'] 
            xls.to_sql('Engine_Room_Database', connection, if_exists='append', 
index=True) 
 

 

3.3.6. Testing for duplicated rows 
 

To prove that no duplicated rows have been added to the database, the script reads the entire 

table and applies an SQL query to get the index value of a duplicated row.  

 

query11 = 'SELECT "Time" AS TIME FROM Engine_Room_Database' 
df = pd.DataFrame(pd.read_sql_query(query11, connection)) 
df = df[df.duplicated(keep='first')] 
 
for i in df.index: 
    write = 'UPDATE Engine_Room_Database SET duplicates = 1 WHERE ROWID = ' + 
str(i) + ';' 
    print(write) 
 

If a duplicated row exists, Python will print an SQL statement as follows: 

 

UPDATE Engine_Room_Database SET duplicates = 1 WHERE ROWID =  + (i) + ; 

 

where (i) equals the index value of a duplicated row. 

 

Printed outputs can then be copied and pasted directly to a DB editor [9] as SQL statements 

for marking of the duplicated rows. Rows with duplicates = 1 can then be ignored or deleted 

from the table. 

If there are no duplicates there will be no printed output. 
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3.3.7. Testing for incorrect timestamps 

 

To test for incorrect timestamps, the passage of time is plotted on a line plot. Any deviation 

from a straight linear increase would point to an error in a timestamp. 

query = 'SELECT "Int Time" AS Time from Engine_Room_Database' 
df = pd.DataFrame(pd.read_sql_query(query, con)) 
 
plt.plot(df['Time']) 
plt.title('PASSAGE OF TIME') 
plt.show() 
 

Returns: 

 

Figure 8. Matplotlib time plot on over four million data points. 

Source: Created by the author using the matplotlib library 

 

Figure 8 displays linear passage of time on more than four million rows. The conclusion that 

the data is clean of any duplicates or incorrect timestamps is reached. 
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4. PYTHON MODEL OF A VIRTUAL ENGINE ROOM 
 

In the following chapter, the Python code developed for virtually running the engines and 

simulating engine behaviour under different operational parameters is presented. 

Independent variables used as a model input are the recorded total power and the timestamps. 

 

4.1. FUNCTIONS 

The entire code is written under the functional programming paradigm [10]. Each function 

is presented and explained. 

 

4.1.1. Mean load per engine 
 

def estimate_load_per_engine(total_power_in_kw): 
    return round(total_power_in_kw / current_engines_online / 1830 * 100, 2) 
 

Function takes the total power in kW (independent variable) as an argument and estimates 

the mean load per each running engine. Estimated load is shown as percentage of the 

maximum nominal load. Factor of 1830 represents the nominal power of the DGs which is 

1830 kW. 

Returns: 

 

Figure 9. Screenshot of simulation output estimating the mean load per engine 

Source: Created by the author using the Python programming language 
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4.1.2. Load dependent start 
 

def count_to_start(load): 
    global start_time, starting_in, current_engines_online, ramping_up 
    if load > start_limit and starting_in == 0: 
        start_time = start_time - 1 
        if start_time < 0: 
            start_time = reset_start_time 
            starting_in = randint(40, 87) 
            return 'ENGINE' 
        else: 
            return start_time 
    elif starting_in != 0: 
        starting_in = starting_in - 1 
        if starting_in == 0: 
            current_engines_online = current_engines_online + 1 
            ramping_up = 40 
            return starting_in 
        else: 
            return 'ONLINE IN: ' + str(starting_in) 
    else: 
        start_time = reset_start_time 
        return np.nan 
 

Function takes the mean load per engine as an argument, compares it with the START LIMIT 

parameter and initiates the countdown from the value of START TIME to the value of zero 

if the mean load is greater than the value of START LIMIT. If countdown to zero is reached, 

the number of running engines is incremented by 1. Then, a random warm-up period between 

40 and 87 seconds is initiated, after which the engine will start to ramp-up. 
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Returns: 

 

Figure 10. Screenshot of the simulation output showing the countdown, command to 

start and the warm-up countdown for DG3 

Source: Created by the author using the Python programming language 

 

Figure 10 shows the last seven seconds of the countdown, followed by the command to start 

DG3, followed by the warm-up period randomly chosen at 57 seconds. 

Ramping is done so that the mean load per engine is established gradually instead of 

simultaneously, which makes the simulation more accurate and realistic (see ramping 

functions below). 

 

4.1.3. Load dependent stop 

 

def count_to_stop(engine_power): 
    global stop_time, stopping_in, current_engines_online, offline_ramping 
    if engine_power / (online_engines - 1) / 1830.0 * 100.0 <= stop_limit and 
stopping_in == 0: 
        stop_time = stop_time - 1 
        if stop_time < 0: 
            stop_time = reset_stop_time 
            stopping_in = 20 
            return 'ENGINE ' + str(current_engines_online+1) 
        else: 
            return stop_time 
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    elif stopping_in != 0: 
        stopping_in = stopping_in - 1 
        if stopping_in == 0: 
            current_engines_online = current_engines_online - 1 
            return stopping_in 
        else: 
            offline_ramping = True 
            return 'OFFLINE IN: ' + str(stopping_in) 
    else: 
        stop_time = reset_stop_time 
        offline_ramping = False 
        return np.nan 
 

 

Function takes the total power as an argument and evaluates if the condition presented in 

chapter 3 is satisfied. If the condition is satisfied, a countdown from the value of STOP TIME 

to the value of zero is initiated. If the countdown to zero is reached, the number of running 

engines is decremented by 1. 

Returns: 

 

Figure 11. Screenshot of the simulation output showing the countdown, command to 

stop and the unloading of DG3 

Source: Created by the author using the Python programming language 

 

Figure 11 shows the last six seconds of countdown, followed by the command to stop DG3, 

followed by the unloading of the engine. 
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Ramping is done so that the mean load per engine is established gradually instead of 

simultaneously, which makes the simulation more accurate and realistic (see ramping 

functions below). 

4.1.4. Estimated load of each engine 

 

def each_engine_load(engines): 
    engines_matrix = np.zeros((1, 5)) 
    engines_matrix[0][0] = round(mean_load_per_engine, 3) 
    for j in range(1, engines): 
        engines_matrix[0][j] = round(mean_load_per_engine, 3) 
    return engines_matrix 
 

 

As an argument, function takes the number of engines that are currently running and creates 

a Numpy array [11] with the shape of [1, 5] filled with zeros [12]. It then replaces zeros with 

the mean load per engine for those engines that are currently running. Array positions of 

engines that are currently not running remain at zero. 

For example, if two engines are running at 63.99%, the function would return: 

array([[63.99, 63.99,  0.  ,  0.  ,  0.  ]]) 

 

4.1.5. Ramping up of a newly started engine 

 

def online_ramp_up(engines): 
    global ramping_up, ramp_up_plus_chunk 
    pct_per_sec = round(engines[0][current_engines_online - 1] / 20, 3) 
    if ramping_up == 0: 
        ramp_up_plus_chunk = 0 
        return None 
    else: 
        ramp_up_plus_chunk = ramp_up_plus_chunk + pct_per_sec 
        engines[0][current_engines_online - 1] = ramp_up_plus_chunk 
        ramping_up = ramping_up - 1 
        return round(ramp_up_plus_chunk, 3) 
 

As an argument, function takes the Numpy array of engine loads and ramps up the newly 

started engine gradually. This results in a smooth load increase rather than an instantaneous 

jump from zero to the mean load per engine. 
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Returns: 

 

Figure 12. Screenshot of the simulation output showing the effect of ramping up of 

the newly started engine 

Source: Created by the author using the Python programming language 

 

Figure 12 shows a simulated process of DG3 ramping up after it is started. Without the 

function the mean load per engine would change instantly once the number of the currently 

running engines is incremented. At the last line of the simulation full load-sharing is 

established and all loads are equal. 

 

4.1.6. Ramping down of the engines that were already running 

 

def online_ramp_down(engines): 
    global ramping_up, ramp_up_minus_chunk 
    if ramping_up == 0 or ramping_up == 39: 
        ramp_up_minus_chunk = 0 
        pass 
    else: 
        ramping_up = ramping_up - 1 



26 

 

        load_difference = ((mean_load_per_engine * current_engines_online) / 
                           (current_engines_online - 1)) - engines[0][0] 
        ramp_up_minus_chunk = ramp_up_minus_chunk + (load_difference/20) 
        load_difference = round(load_difference - ramp_up_minus_chunk, 3) 
        engines[0][0:current_engines_online - 1] = 
engines[0][0:current_engines_online - 1] + load_difference 
        return load_difference 
 

 

As an argument, function takes the Numpy array of engine loads and calculates the 

difference between the current load and the estimated mean load under full load-sharing with 

the newly started engine. The value is then gradually added to the value of Numpy array 

positions where engines were already running. The result is a gradual decrease in engine 

load. The simulation is run and the effects of the function are presented: 

 

 

Figure 13. Screenshot of the simulation output showing the effect of ramping down of 

the engines that were already running 

Source: Created by the author using the Python programming language 

 

Figure 13 shows a simulated process of DG1 and DG2 ramping down after DG3 is started. 

Without the function, the mean load per engine would change instantaneously with the 

incrementation of the number of running engines. At the last line of the simulation full load-

sharing is established and all loads are equal. 
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4.1.7. Ramping down due to a load dependent stop 

 

def offline_ramp_down(engines): 
    global ramp_down_minus_chunk 
    pct_per_sec = round(engines[0][current_engines_online - 1] / 20, 3) 
    while offline_ramping is False or stop_time != reset_stop_time: 
        ramp_down_minus_chunk = 0 
        return offline_ramping 
    else: 
        ramp_down_minus_chunk = ramp_down_minus_chunk - pct_per_sec 
        engines[0][current_engines_online - 1] = 
engines[0][current_engines_online - 1] + ramp_down_minus_chunk 
        if simulate_running[-1][2] != current_engines_online: 
            engines[0][current_engines_online - 1] = 
engines[0][current_engines_online - 2] 
            engines[0][current_engines_online] = 0 
            return round(ramp_down_minus_chunk, 3) 
 

 

As an argument, function takes the Numpy array of engine loads, calculates the percentage 

of the load that must be unloaded each second and subtracts that value from the load of the 

engine that is stopping. The result is a gradual decrease of the load over a period of 20 

seconds. 

Returns: 

 

Figure 14. Screenshot of the simulation output showing the effect of ramping down of 

DG3 due to a load dependent stop 
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Source: Created by the author using the Python programming language 

 

4.1.8. Ramping up due to a load dependent stop 
 

def offline_ramp_up(engines): 
    global ramp_down_plus_chunk 
    while offline_ramping is False or stop_time != reset_stop_time: 
        ramp_down_plus_chunk = 0 
        return offline_ramping 
    else: 
        load_difference = round(((mean_load_per_engine * 
current_engines_online) / 
                                 (current_engines_online - 1)) - engines[0][0], 
3) 
        ramp_down_plus_chunk = ramp_down_plus_chunk + (load_difference / 20) 
        engines[0][0:current_engines_online - 1] = 
engines[0][0:current_engines_online - 1] + ramp_down_plus_chunk 
        if simulate_running[-1][2] != current_engines_online: 
            engines[0][current_engines_online - 1] = 
engines[0][current_engines_online - 1] + ramp_down_plus_chunk 
        return round(ramp_down_plus_chunk, 3) 
 

As an argument, function takes the Numpy array of engine loads, calculates the difference 

that must be added to the engines that will continue running after the load-dependent stop 

and adds that difference to the array positions of the running engines. The result is a gradual 

increase in load over a period of 20 seconds. 

Returns: 

 

Figure 15. Screenshot of the simulation output showing the effect of ramping up of 

DG1 and DG2 due to a load dependent stop of DG3 
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Source: Created by the author using the Python programming language 

 

 

4.1.9. Immediate start due to high load 
 

def detect_high_load(engines): 
    global current_engines_online, starting_in, high_load_counter 
    if engines[0][0] > 100: 
        current_time = current_engines_online * 1 
        high_load_counter += current_time 
        high_load_detected = True 
        starting_in = randint(40, 87) 
        return high_load_detected 
    else: 
        high_load_detected = False 
        return high_load_detected 

 
 

As an argument, function takes the Numpy array of engine loads and issues a direct 

command to start an additional engine if the load on any of the engines becomes greater than 

100%. Note that in this case there is no countdown for determining if the start is required 

and that all other programmed logic is ignored. The engine immediately goes to the warm-

up stage, after which it synchronises and engages in full load-sharing. 

Function also calculates the total time spent in zones where load is greater than 100%. Note 

that the load of 100% is the nominal load of the DGs, but that the engines can run at load 

greater than 100% when a sudden surge in power occurs.  

Returns: 

 

Figure 16. Screenshot of the simulation output showing the detection of load greater 

than 100% 

Source: Created by the author using the Python programming language 
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Figure 16 shows an output of the simulation during the time of load greater than 100%. 

Boolean value changes to True, after which a random warm-up period of 78 seconds begins 

immediately. 

 

4.1.10. Counting the total number of starts and stops 
 

def count_change_in_number_of_engines(online_engines): 
    global change_no_engines 
    if online_engines != current_engines_online: 
        change_no_engines += 1 
        return change_no_engines 
    else: 
        return change_no_engines 
 

Function takes the number of running engines as an argument and then counts how many 

times the number of running engines has changed since the beginning of the simulation. 

Returns: 

 

Figure 17. Screenshot of the simulation output showing that the number of running 

engines has changed five times since the beginning of the simulation. 

Source: Created by the author using the Python programming language 

 

4.1.11. Calculating the total running hours 
 

def count_running_hours(online): 
    global running_hours 
    running_hours = online + running_hours 
    return round((running_hours / 3600), 2) 
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Function takes the number of running engines as an argument and calculates the total 

combined running hours for all engines in the facility. 

Returns: 

 

Figure 18. Screenshot of the simulation output showing the total combined running 

hours since the beginning of the simulation. 

Source: Created by the author using the Python programming language 

 

4.1.12. Calculating the fuel consumption 
 

def get_closest_consumption(load_list, engine_load): 
    global consumed 
    for j in range(len(engine_load[0])): 
        closest_load = min(load_list, key=lambda x: abs(x - engine_load[0, j])) 
        closest_consumption = [j for j, x in enumerate(load_list) if x == 
closest_load][0] 
        consumed = consumed + (consumption_per_h_gallons[closest_consumption] / 
3600 * 3.78541) 
    return round(consumed, 2) 
 

 

Function takes two arguments: load_list, engine_load 

The first argument is a list containing loads given by the equipment manufacturer. Each load 

in the first list corresponds to the fuel consumption from the second list. The lists are 

presented: 

load_list = [0.1, 10, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 
100] 
 
consumption_per_h_gallons = [0, 21.9, 32.5, 38.0, 43.5, 49.25, 55.0, 60.95, 66.9, 
72.95, 79.0,  84.75, 90.5, 96.4, 102.5, 108.2, 113.9, 124.6] 
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Function then iterates over the Numpy array of the running engines. For each load in the 

array, the function finds its closest load in the first list and the corresponding consumption 

for that load in the second list. 

For example, if the DG load is 48%, the closest load is 50% and the corresponding fuel 

consumption is 66.9 gallons/h. 

Returns: 

 

Figure 19. Screenshot of the simulation output showing the total fuel consumption 

since the beginning of the simulation. 

Source: Created by the author using the Python programming language 

 

4.1.13. Sample of a simulation printout 
 

The printed output of all the functions in the program for a period of five seconds is 

presented: 

 

2019-06-27 12:35:48.328000 POWER:2554.0 ONLINE:2 CHANGE NO. ENGINES:0 RUNNING 

HOURS:0.03 MEAN LOAD/ENG:69.78 STARTING:ONLINE IN: 34 STOPPING:nan STARTING IN:34 

STOPPING IN:0 EACH ENGINE:[[69.78 69.78  0.    0.    0.  ]] HIGH LOAD:False RAMP DOWN:None 

RAMP UP:None OFFLINE UP:False OFFLINE DOWN:False CONSUMPTION:9.82 

2019-06-27 12:35:49.328000 POWER:2534.0 ONLINE:2 CHANGE NO. ENGINES:0 RUNNING 

HOURS:0.03 MEAN LOAD/ENG:69.23 STARTING:ONLINE IN: 33 STOPPING:nan STARTING IN:33 

STOPPING IN:0 EACH ENGINE:[[69.23 69.23  0.    0.    0.  ]] HIGH LOAD:False RAMP DOWN:None 

RAMP UP:None OFFLINE UP:False OFFLINE DOWN:False CONSUMPTION:10.01 
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2019-06-27 12:35:50.328000 POWER:2580.0 ONLINE:2 CHANGE NO. ENGINES:0 RUNNING 

HOURS:0.03 MEAN LOAD/ENG:70.49 STARTING:ONLINE IN: 32 STOPPING:nan STARTING IN:32 

STOPPING IN:0 EACH ENGINE:[[70.49 70.49  0.    0.    0.  ]] HIGH LOAD:False RAMP DOWN:None 

RAMP UP:None OFFLINE UP:False OFFLINE DOWN:False CONSUMPTION:10.2 

2019-06-27 12:35:51.343000 POWER:2576.0 ONLINE:2 CHANGE NO. ENGINES:0 RUNNING 

HOURS:0.03 MEAN LOAD/ENG:70.38 STARTING:ONLINE IN: 31 STOPPING:nan STARTING IN:31 

STOPPING IN:0 EACH ENGINE:[[70.38 70.38  0.    0.    0.  ]] HIGH LOAD:False RAMP DOWN:None 

RAMP UP:None OFFLINE UP:False OFFLINE DOWN:False CONSUMPTION:10.39 

2019-06-27 12:35:52.343000 POWER:2560.0 ONLINE:2 CHANGE NO. ENGINES:0 RUNNING 

HOURS:0.03 MEAN LOAD/ENG:69.95 STARTING:ONLINE IN: 30 STOPPING:nan STARTING IN:30 

STOPPING IN:0 EACH ENGINE:[[69.95 69.95  0.    0.    0.  ]] HIGH LOAD:False RAMP DOWN:None 

RAMP UP:None OFFLINE UP:False OFFLINE DOWN:False CONSUMPTION:10.58 
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5. BENCHMARK TESTS ON THE MODEL 
 

In the following part of the study, benchmark tests on the model are performed in order to 

determine if the model accurately mimics the conditions, values and behaviours measured 

in the real world. 

 

5.1. METHODOLOGY 

 

SQL queries to fetch data from the database and then store the fetched data in a Pandas 

DataFrame are written. Matplotlib is then used to draw graphs. The first graph represents the 

change in the recorded physical quantities, while the second represents the quantities e 

stimated by the simulation output.   

 

The quality of the model is evaluated by comparing the two graphs.  

 

5.1.1. Testing on a small scale 

 

The simulation is run on 200 seconds during the time of a load-dependent start. The load of 

the engine that was already running is plotted. Expected behaviour: increase in load, 

resulting in a load-dependent start, followed by a gradual decrease of the load as another 

engine is ramped-up and begins to share the load. 

 

query = 'SELECT "TOTAL POWER" AS TOT_POW, "REQUIRED ENGINES" AS ENGINES, 
"Time", "DG1 POWER [%]" AS DG1 from Engine_Room_Database LIMIT 200 OFFSET 
18050' 
df = pd.DataFrame(pd.read_sql_query(query, con)) 
 
# LINE SUBPLOTS OF DG1 MEASURED AND DG1 ESTIMATED LOAD 
plt.subplot(2, 1, 1) 
plt.plot(df['DG1']) 
plt.title('DG1 LOAD MEASURED') 
plt.subplot(2, 1, 2) 
plt.plot([item[3][0,0] for item in simulate_running]) 
plt.title('DG1 LOAD ESTIMATED') 
plt.show() 
 
Returns: 
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Figure 20. Comparison of measured and estimated load on DG1 before and after the 

load dependent start 

Source: Created by the author using the matplotlib library 

 

Figure 20 displays successful recreation of the measured conditions. All characteristic points 

are observable and there is no significant deviation from the measured data. The conclusion 

that the test is successful is reached. 
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5.1.2. Testing on a medium scale 

 

The simulation is run on 20000 seconds. DG1 measured and estimated load is plotted. 

 
query = 'SELECT "TOTAL POWER" AS TOT_POW, "REQUIRED ENGINES" AS ENGINES, 
"Time", "DG1 POWER [%]" AS DG1 from Engine_Room_Database LIMIT 20000 OFFSET 
18050' 
df = pd.DataFrame(pd.read_sql_query(query, con)) 

 
# LINE SUBPLOTS OF DG1 MEASURED AND DG1 ESTIMATED LOAD 
plt.subplot(2, 1, 1) 
plt.plot(df['DG1']) 
plt.title('DG1 LOAD MEASURED') 
plt.subplot(2, 1, 2) 
plt.plot([item[3][0,0] for item in simulate_running]) 
plt.title('DG1 LOAD ESTIMATED') 
plt.show() 
 

Returns: 



37 

 

 

Figure 21. Comparison of measured and estimated load on DG1 for a period of 20000 

seconds. 

Source: Created by the author using the matplotlib library 

 

Figure 21 displays successful recreation of the measured conditions. All characteristic points 

are observable and there is no significant deviation from the measured data. 
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The model is tested again by observing the measured and estimated change in the number of 

running engines on a period of 250000 seconds. 

# LINE SUBPLOTS OF MEASURED AND ESTIMATED CHANGE IN NUMBER OF ENGINES 
plt.subplot(2, 1, 1) 
plt.plot(df['ENGINES']) 
plt.title('CHANGE IN NUMBER OF ENGINES MEASURED') 
plt.subplot(2, 1, 2) 
plt.plot([item[2] for item in simulate_running]) 
plt.title('CHANGE IN NUMBER OF ENGINES ESTIMATED') 
plt.show() 
 

Returns: 
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Figure 22. Comparison of measured and estimated change in the number of running 

engines for a period of 250000 seconds 

Source: Created by the author using the matplotlib library 

Figure 22 displays a successful recreation of the measured conditions. All characteristic 

points are observable and there is no significant deviation from the measured data. 
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5.1.3. Testing on a large scale 

 

The simulation is run on 1 million seconds. Mean load per engine in the form of a histogram 

with a logarithmic y axis is observed. 

Note that the recorded values are incrementing the 'ENGINES' column as soon as the 

command to start is executed. Even if the engine is in the warm-up stage and is not yet 

running the system considers that engine to be running. 

Because of this, the histogram shows somewhat less time spent under high load, as the total 

power is divided by the value in the 'ENGINES' column immediately after a start command 

is issued by the PMS. 

For example: 

Table 2. Comparison of recorded and estimated DG loads 

 Total Power 

[kw] 

DG1 [%] DG2 [%] DG3 [%] Mean load [%] 

Recorded 4000 109% 109% Warming-up 72.8% 

Model 4000 109% 109% Warming-up 109% 

 

Source: Created by the author using the MS Word software 

 

query = 'SELECT "TOTAL POWER" AS TOT_POW, "REQUIRED ENGINES" AS ENGINES, 
"Time", "DG1 POWER [%]" AS DG1, "DG2 POWER [%]" AS DG2, "DG3 POWER [%]" AS 
DG3,"DG4 POWER [%]" AS DG4,"DG5 POWER [%]" AS DG5 from Engine_Room_Database 
LIMIT 1000000' 
df = pd.DataFrame(pd.read_sql_query(query, con)) 
 
# MEAN LOAD PER ENGINE MEASURED AND ESTIMATED 
plt.subplot(2, 1, 1) 
df['MEAN POWER'] = df['TOT_POW'] / df['ENGINES'] / 1830 * 100 
arr = plt.hist(df['MEAN POWER'], bins=bins, log=True, range=[-1, 120]) 
for i in range(bins): 
    plt.text(arr[1][i], arr[0][i], str(arr[0][i])) 
plt.title('MEASURED: MEAN LOAD PER ENGINE') 
plt.subplot(2, 1, 2) 
data = [[item[4] for item in simulate_running]] 
arr = plt.hist(data, bins=bins, log=True, range=[-1, 120]) 
for i in range(bins): 
    plt.text(arr[1][i], arr[0][i], str(arr[0][i])) 
plt.title('ESTIMATED: MEAN LOAD PER ENGINE') 
plt.show() 
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Figure 23. Comparison of measured and estimated mean load per engine for a period 

of 1 million seconds 

Source: Created by the author using the matplotlib library 
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For the first time, a significant deviation between measured and estimated values is observed. 

The histogram of measured values presents only one second of work at a load higher than 

100%, while the model presents a total of 25 seconds spent in load higher than 100%. The 

fact that the recorded values for the number of running engines are incremented by one as 

soon as the command to start is executed does not explain the difference in loads greater 

than 100% on the histograms.  

If a non-logarithmic y axis were chosen, the shortest bars would be insignificant in size 

compared to the highest bars of the histogram and could not be seen by the naked eye. 

Nonetheless, by choosing a logarithmic axis and researching the difference between the 

histograms, an insight into a specific problem associated with the offshore oil and gas drilling 

operations, particularly the pipe tripping and POOH (pulling out of the hole) operations is 

reached. 

This directly leads us into the most important part of this study where the author explains 

what pipe tripping and POOH is, why does the developed model estimate the tripping 

operation differently than that which was recorded and how does the tripping operation affect 

the performance of the PMS and the drilling facility in particular. 

A solution to the specific problem of pipe tripping in the form of the change of operational 

parameters from their commissioning values to the optimised values will be proposed. 

 

 

 

 

 

  



43 

 

6. THE IMPACT OF PIPE TRIPPING AND POOH OPERATIONS 

ON THE PMS AND THE DRILLING FACILITY 
 

In the following chapter, the particulars of pipe tripping and POOH and their impact on the 

drilling rig are explained. 

Note that the term tripping in this study is not associated with the term tripping in context of 

electrical engineering, such as the tripping of the circuit breakers due to an overload. 

 

6.1. EXPLANATION OF TRIPPING AND POOH 

 

Pipe tripping (or “making a round trip” or simply “making a trip”) is the physical act of 

pulling the drill string out of the wellbore and then running it back in [13]. The movements 

are achieved by moving the traveling block up and down the derrick by using drawworks to 

hoist the traveling block up or to lower the travelling block down. 

POOH is the physical act of pulling the drill string out of the wellbore in a controlled manner 

[14]. 

Both tripping and POOH are done in accordance to well control practices to minimise the 

possibility of inducing a kick [15] from the wellbore. 
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Figure 24. Representation of a drilling derrick. Drawworks and the traveling block 

are highlighted in yellow 
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Source: Drilling equipment (2020, June.) Energy Faculty. Available at: https://energyfaculty.com/drilling-

equipment/. (23. 04. 2020.) 

Figure 24 shows a typical drilling derrick of a modern offshore drilling rig. The traveling 

block is connected to the drawworks drum by a wire rope. Spooling of the drawworks drum 

results in the travelling block movement along the derrick. 

The drawworks uses several 3PH AC motors driven by the Drilling VFDs to hoist the 

traveling block. Each hoisting sequence results in a surge of power, followed by sharp 

ramping of the engine load. Once the block is hoisted to the top of the drilling derrick the 

demand for power plummets as the equipment stands still, until a new tripping sequence is 

initiated. Note that the time required for hoisting of the traveling block is much lower than 

the time defined in the START TIME parameter. 

This creates two undesirable situations for the DGs, PMS and the rig: 

• The surge in power is so quick and sharp that the START TIME parameter rarely 

gets enough time spent in the START LIMIT zone to achieve a successful countdown 

to zero. Countdown to zero is never reached because the time required for hoisting 

the block to the top of the derrick is shorter than the time defined by the START 

TIME parameter. In other words, there is no time for a load-dependent start. Instead, 

an immediate high-load start is initiated because the engines are ramped to more than 

100% load. By the time the newly started engine is synchronised, the traveling block 

is already hoisted to the top of the derrick and there is no requirement for that 

additional power. 

• As soon as the traveling block is positioned at the top of the drilling derrick, most of 

the electrical equipment is at standstill. An additional engine is now running due to 

a high-load start, so the countdown to load-dependent stop is initiated. Should the 

equipment stay at standstill for long enough the countdown to stop will be reached 

and the engine that was just started will be shut down. 

• To simplify – the system starts an engine only to compensate for a few seconds of 

peak demand. By the time the engine is synchronised the peak demand is already 

gone. As the peak demand is gone, the mean load per engine gets undesirably low so 

the load-dependent stop is initiated. 

• Once the crew is ready to handle the next stand of the drill string [17], the same cycle 

repeats, meaning that for each stand of the drill string one engine will be started and 

then stopped. 

https://energyfaculty.com/drilling-equipment/
https://energyfaculty.com/drilling-equipment/
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The mentioned situations result in several problems: 

• Instability of the Main SWBD voltage and frequency due to numerous sudden surges 

in required power. 

• Ramping of the engines to +100% load, causing intermittent starting and stopping of 

the engines. 

• Overheating, using of excess starting air, increased vibrations and noise. 

• Stress on the Main SWBD switchgear.  

 
Figure 25. Change in total power during tripping operations over a period of 5000 

seconds 

Source: Created by the author using the matplotlib library 

Figure 25 represents the sudden surges in total power associated with hoisting of the 

traveling block. Base load is established around 2500 kW, while the peak demand surges to 

4000 kW. 

Evaluation on how the change in the load would affect the engines in case only two engines 

were running during the operations: 
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For baseload: 

• 

2500

2

1830
∗ 100 = 68.3 % 

For peak load: 

• 

4000

2

1830
∗ 100 = 109.2 % 

 

This demonstrates that the peak load is sufficient to ramp the DGs to loads higher than 100%, 

resulting in an immediate high-load start. 

Measurement of the average time between the peak demands: 

 

Figure 26. Time between two peak loads during tripping operations over a period of 

5000 seconds 

Source: Created by the author using the matplotlib library 
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Figure 26 presents the time difference between two peak loads, approximated at 650 seconds. 

This value plays an important role in the later part of the study where simulations are run 

under different operational parameters. 

 

 

6.1.1. Examples of tripping and POOH operations on the performance of the DGs 

 

Author demonstrates the effect by running simulations with the commissioning parameters. 

 

query5 = 'SELECT "TOTAL POWER" AS TOT_POW, "Time", "START TIMER" AS ST, 
"REQUIRED ENGINES" AS ENGINES from Engine_Room_Database LIMIT 25000 OFFSET 
1720000'  
df = pd.DataFrame(pd.read_sql_query(query5, con)) 
power_list = df[['TOT_POW', 'Time', 'ST']].to_numpy() 
 
start_limit = 80  # Given in [%]    
start_time = 10  # Given in [s]      
stop_limit = 70  # Given in [%]       
stop_time = 200  # Given in [s]  
 
#  LINE PLOTS: MEASURED TOTAL POWER, ESTIMATED STOP TIME, ESTIMATED CHANGE IN 
NUMBER OF ENGINES 
plt.subplot(3, 1, 1) 
plt.plot(df['TOT_POW']) 
plt.title('TOTAL POWER IN kW') 
plt.subplot(3, 1, 2) 
plt.plot([item[-1] for item in simulate_running]) 
plt.title('ESTIMATED: STOP TIME') 
plt.subplot(3, 1, 3) 
plt.plot([item[2] for item in simulate_running]) 
plt.title('ESTIMATED: CHANGE IN NUMBER OF ENGINES') 
plt.show() 

 

Recorded total power, estimated countdown times and estimated change in the number of 

running engines over 25000 seconds are plotted below. 

Returns: 
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Figure 27. The effect of pipe tripping on DG behaviour 

Source: Created by the author using the matplotlib library 

Figure 27 presents the effect of pipe tripping on DG behaviour for a period of 25000 seconds. 

The top subplot displays the recorded total power in kW, the middle subplot displays a 
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countdown to a load-dependent stop, while the bottom subplot displays the change in the 

number of running engines, constantly fluctuating between two and three. 

This demonstrates a strong correlation between the tripping operation and the change of the 

number of running engines. 

In this simulation, the model estimated the total change in number of running engines to 22. 

Over a period of 25000 seconds, this averages down to one change every 19 minutes. A total 

of 86 seconds spent at load great than 100% is estimated. 

 

Another simulation: 

 

query5 = 'SELECT "TOTAL POWER" AS TOT_POW, "Time", "START TIMER" AS ST, 
"REQUIRED ENGINES" AS ENGINES from Engine_Room_Database LIMIT 28000 OFFSET 
3122500' 
df = pd.DataFrame(pd.read_sql_query(query5, con)) 
power_list = df[['TOT_POW', 'Time', 'ST']].to_numpy() 
 
start_limit = 80  # Given in [%]     
start_time = 10  # Given in [s]      
stop_limit = 70  # Given in [%]       
stop_time = 200  # Given in [s]       
 
#  LINE PLOTS: MEASURED TOTAL POWER, ESTIMATED STOP TIME, ESTIMATED CHANGE IN 
NUMBER OF ENGINES 
plt.subplot(3, 1, 1) 
plt.plot(df['TOT_POW']) 
plt.title('TOTAL POWER IN kW') 
plt.subplot(3, 1, 2) 
plt.plot([item[-1] for item in simulate_running]) 
plt.title('ESTIMATED: STOP TIME') 
plt.subplot(3, 1, 3) 
plt.plot([item[2] for item in simulate_running]) 
plt.title('ESTIMATED: CHANGE IN NUMBER OF ENGINES') 
plt.show() 
 

Recorded total power, estimated countdown times and estimated change in the number of 

running engines over 28000 seconds are plotted. 
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Figure 28. The effect of POOH on DG behaviour 

Source: Created by the author using the matplotlib library 

Again, a strong correlation between spikes in power and the change of number of running 

engines is observed. 
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In this simulation, the model estimated a total number of changes in running engines to 41, 

which averages down to one change every 10 minutes. This time the number of high loads 

remained at zero. 

The above examples demonstrate that the commissioning parameters are not optimised for 

tripping and POOH operations due to intermittent starting and stopping of the engines, as 

well as the excess time spent at loads higher than 100%. 

 

6.1.1.1. Mitigating the issues manually 

As mentioned in chapter 2, during the data logging and exporting of the recorded values, the 

operational parameters of the PMS were altered from their commissioning values. The crew 

was aware of the tripping and POOH issues and had already tried to resolve the issues by 

adjusting the parameters to the following values: 

start_limit = 85  # Given in [%]     
start_time = 15  # Given in [s]      
stop_limit = 71  # Given in [%]       
stop_time = 1599  # Given in [s]       
 

In this part of the study, the author explains the methodology and the results of manually 

mitigating the issues by two different methods:  

• Changing the values of the operational parameters. 

• Forcing the minimum required number of running engines to a fixed value. 

 

6.1.1.2. Changing the value of the operational parameters 

By changing the value of the STOP TIME parameter from the commissioning value of 200 

seconds to a value of 1599 seconds (which is the largest possible value that the system would 

accept for this parameter) the system rarely gets enough time spent in the load zone required 

for load-dependent stop to successfully reach the countdown to zero. This resolves the 

problem of intermittent starting and stopping of the engines. Also, since the system 

effectively runs more engines than required by the calculation, a sudden surge in power does 

not push the engines to a load greater than 100%. 

However, there is a considerable drawback in the form of reduced mean load per engine 

during the time when the equipment is at standstill. Furthermore, since a single second spent 

at a load higher than a load which satisfies the load-dependent stop countdown is sufficient 

to reset the counter back to the default value of 1599 seconds, a successful countdown to 
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zero is less likely to occur. As a result, the generator sets are underloaded, which impacts 

product health, operation and uptime while increasing the opportunity for unplanned events 

and shutdowns [18]. 

 

6.1.1.3. Forcing the minimum required number of engines 

Another method of mitigation was setting the minimum required number of engines to a 

fixed value, effectively forcing the system to run a higher number of engines than required 

by the calculation. Most of the time this was set to a minimum of three engines, making the 

system perform load-dependent starting and stopping strictly in the range from three to five 

engines, never dropping below three engines. 

Like the method above, this effectively lowered the mean load per engine during the times 

when three engines were running but two engines were required by the calculation. 

Furthermore, this method was subject to human error, as the crew could forget to remove 

the forced value once tripping and POOH operations were completed. 

The author provides proof that the third engine was started by a human action rather than an 

automatic start by extracting the measured data from the database. 

Table 3. Export from the SQLite database 

DG5 

POWER 

[%] 

REACTIV

E POWER 

[kW] 

REACTIV

E POWER 

[%] 
cos  

FREQUENC

Y [Hz] 

VOLTA

GE [V] 

ENGINES 

RUNNING 

75.9375 1032.0 45.125 0.802734375 59.96875 673.0 2.0 

75.0 1039.0 45.40625 
0.7973632812

5 
60.0 673.5 2.0 

75.4375 1041.0 45.5 
0.7983398437

5 
60.0 673.5 2.0 

74.8125 1045.0 45.6875 0.794921875 60.0 673.5 2.0 

76.0625 1041.0 45.5 0.80078125 59.9375 673.0 2.0 

75.875 1036.0 45.28125 0.8017578125 59.9375 673.0 2.0 

76.1875 1052.0 45.96875 
0.7983398437

5 
59.96875 673.0 2.0 

75.0 1054.0 46.0625 
0.7934570312

5 
60.0 673.0 2.0 

75.8125 1045.0 45.6875 0.798828125 60.0 673.5 2.0 

75.75 1048.0 45.8125 0.7978515625 59.96875 673.0 2.0 
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75.9375 1043.0 45.59375 0.7919921875 59.96875 673.5 2.0 

75.4375 1050.0 45.90625 
0.7954101562

5 
60.0 673.5 2.0 

73.9375 1046.0 45.71875 0.791015625 60.0 673.5 2.0 

74.5625 1046.0 45.71875 0.796875 60.03125 673.5 2.0 

74.0 1041.0 45.5 0.7939453125 60.0 673.5 2.0 

74.75 1046.0 45.71875 
0.7944335937

5 
59.96875 673.5 2.0 

74.6875 1041.0 45.5 
0.7954101562

5 
59.96875 673.5 2.0 

75.1875 1033.0 45.15625 0.7998046875 59.96875 673.5 2.0 

74.5 1034.0 45.21875 0.796875 59.96875 673.0 2.0 

75.25 1041.0 45.5 0.7978515625 60.0 673.5 2.0 

74.0 1033.0 45.15625 0.794921875 60.03125 673.5 2.0 

75.1875 1040.0 45.46875 0.7978515625 60.0 673.5 2.0 

73.8125 1036.0 45.28125 
0.7944335937

5 
59.96875 673.0 2.0 

74.9375 1038.0 45.375 
0.7963867187

5 
60.0 673.5 2.0 

74.0 1040.0 45.46875 0.79296875 60.0 673.0 2.0 

74.375 1037.0 45.34375 
0.7954101562

5 
59.96875 673.5 2.0 

73.4375 1038.0 45.375 
0.7915039062

5 
60.0 673.5 2.0 

74.3125 1029.0 45.0 
0.7973632812

5 
60.0 673.5 2.0 

74.1875 1047.0 45.78125 0.7919921875 59.90625 672.5 2.0 

75.125 1037.0 45.34375 
0.7983398437

5 
59.96875 673.5 2.0 

73.6875 1042.0 45.5625 0.791015625 59.96875 673.5 2.0 

75.375 1039.0 45.40625 0.798828125 59.875 673.0 2.0 

76.8125 1051.0 45.9375 0.80078125 59.8125 672.0 2.0 

74.3125 1046.0 45.71875 
0.7924804687

5 
60.09375 674.0 2.0 

74.0 1049.0 45.84375 
0.7905273437

5 
60.0625 673.5 2.0 

74.25 1041.0 45.5 0.787109375 60.0 673.5 2.0 

73.1875 1044.0 45.625 
0.7885742187

5 
60.0 673.5 2.0 

73.1875 1041.0 45.5 
0.7895507812

5 
59.96875 673.5 2.0 
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74.5 1042.0 45.5625 
0.7944335937

5 
59.96875 673.5 2.0 

74.3125 1043.0 45.59375 
0.7934570312

5 
60.0 673.0 2.0 

74.4375 1038.0 45.375 
0.7954101562

5 
60.0 673.5 2.0 

72.9375 1046.0 45.71875 0.787109375 60.03125 673.5 2.0 

72.8125 1031.0 45.0625 0.791015625 60.03125 673.5 2.0 

71.875 1034.0 45.21875 0.7861328125 60.03125 674.0 2.0 

72.5 1034.0 45.21875 
0.7885742187

5 
60.0 673.5 2.0 

71.0625 1032.0 45.125 0.783203125 60.0 673.0 2.0 

73.125 1036.0 45.28125 
0.7905273437

5 
60.0 674.0 2.0 

72.625 900.5 39.375 
0.7924804687

5 
60.0 679.5 2.0 

70.375 875.0 38.25 0.8271484375 60.0625 679.5 2.0 

70.375 851.0 37.21875 
0.8344726562

5 
60.03125 679.5 2.0 

69.75 835.5 36.53125 
0.8364257812

5 
60.03125 679.5 2.0 

68.4375 807.5 35.3125 
0.8403320312

5 
60.03125 679.5 2.0 

67.9375 796.0 34.78125 
0.8422851562

5 
60.0625 680.0 2.0 

66.1875 793.0 34.65625 0.8369140625 60.09375 680.5 2.0 

66.25 788.0 34.4375 
0.8383789062

5 
60.09375 680.0 2.0 

63.875 770.0 33.65625 0.8349609375 60.125 679.5 2.0 

64.4375 761.5 33.28125 0.83984375 60.125 680.0 2.0 

62.25 746.5 32.625 
0.8364257812

5 
60.09375 679.5 2.0 

62.0937

5 
740.5 32.375 0.837890625 60.125 679.5 2.0 

59.625 738.5 32.28125 
0.8344726562

5 
60.125 679.5 2.0 

59.8437

5 
735.5 32.15625 0.8310546875 60.125 678.5 2.0 

58.875 725.5 31.71875 
0.8295898437

5 
60.125 678.5 2.0 

57.0312

5 
735.5 32.15625 

0.8120117187

5 
60.125 678.5 2.0 
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54.5625 744.5 32.53125 0.802734375 60.1875 678.5 3.0 

 
Source: Created by the author using the DB Browser for SQLite software 

 

Recorded data shows no indication of increased load in the moments before the change in 

the number of running engines. DG5 works in balanced load, never ramping higher than the 

value of the START LIMIT parameter. 

The change in the number of running engines is a result of human action, rather than an 

automatic start commanded by the PMS. 

 

6.1.1.4. Proposal of the solution 

The author proposes a solution to the problem of unstable work during tripping and POOH 

operations in the form of a STOP TIME parameter adjustment. 

Three subplots are presented, covering the period of the POOH operations: 

• The top graph presents the recorded total power, in [kW]. 

• The middle graph presents the countdown to a load-dependent stop, in [s] 

• The bottom graph displays the change in the number of running engines. 

Two simulations are run. The first simulation runs under commissioning parameters, while 

the second simulation runs with the STOP TIME equal to 650, as approximated in the 

previous chapter (ΔT=650). 

 

6.1.1.5. POOH Simulation 

The simulation is run during POOH operations over a period of 28000 seconds. 

query5 = 'SELECT "TOTAL POWER" AS TOT_POW, "Time", "START TIMER" AS ST, 
"REQUIRED ENGINES" AS ENGINES from Engine_Room_Database LIMIT 28000 OFFSET 
3122500' 
df = pd.DataFrame(pd.read_sql_query(query5, con)) 
power_list = df[['TOT_POW', 'Time', 'ST']].to_numpy() 
 
start_limit = 80  # Given in [%]     
start_time = 10  # Given in [s]      
stop_limit = 70  # Given in [%]       
stop_time = 200  # Given in [s]       
 
#  LINE PLOTS: MEASURED TOTAL POWER, ESTIMATED STOP TIME, ESTIMATED CHANGE IN 
NUMBER OF ENGINES 
plt.subplot(3, 1, 1) 
plt.plot(df['TOT_POW']) 
plt.title('TOTAL POWER IN kW') 
plt.subplot(3, 1, 2) 
plt.plot([item[-1] for item in simulate_running]) 
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plt.title('ESTIMATED: STOP TIME') 
plt.subplot(3, 1, 3) 
plt.plot([item[2] for item in simulate_running]) 
plt.title('ESTIMATED: CHANGE IN NUMBER OF ENGINES') 
plt.show() 
 

 
 

Figure 29. Simulation of POOH, period = 25000 seconds, STOP TIME = 200 

Source: Created by the author using the matplotlib library 
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Figure 29 presents the result of the first simulation. 

It is observed that the commissioning value of the STOP TIME parameter is not large enough 

to provide reliable performance during the POOH operations. Each surge in total power 

results in an engine start, followed by an immediate countdown to stop, unloading, and 

stopping of the engine. To eliminate a successful countdown to zero, the value of the STOP 

TIME parameter needs to be increased. As a result, load-dependent stop would not occur as 

often, and the overall stability and performance would be increased.   

The model estimates the following key values over a period of 28000 seconds: 

Table 3. Estimates of the first simulation under the commissioned parameters 

Changes in number of running engines: 41 

Total running hours [h]: 27.29 

Total fuel consumption [L]: 7595.51 

Total time spent at load higher than 100% [s]: 0 
 

Source: Created by the author using the MS Word software 

 

The same simulation is run again, but this time with the modified STOP TIME parameter. 

The rest of the parameters remain at their commissioned values: 

start_limit = 80  # Given in [%]     
start_time = 10  # Given in [s]     
stop_limit = 70  # Given in [%]       
stop_time = 650  # Given in [s]       
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Figure 30. Simulation of POOH, period = 25000 seconds, STOP TIME = 650 

Source: Created by the author using the matplotlib library 

 

Figure 30 presents the result of the second simulation. 
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It is observed that the modified STOP TIME value of 650 seconds was chosen correctly and 

that the intermittent starting and stopping of the engines is fully eliminated. Surges in total 

power are frequent enough to reset the countdown to zero before it is successfully reached. 

As a result, no engines are started or stopped for the entire duration of the POOH operations. 

POOH operations are completed around 23000 seconds, resulting in the first successful 

countdown to zero, followed by a load-dependent stop. The system is balanced during the 

entire time of the simulation. 

The model estimates the following key values over a period of 28000 seconds: 

Table 4. Estimates of the first simulation under the modified parameters 

Changes in number of running engines: 1 

Total running hours [h]: 29.7 

Total fuel consumption [L]: 7657.32 

Total time spent at load higher than 100% [s]: 0 

 

Source: Created by the author using the MS Word software 

There is a drawback in the form of increased running hours and increased fuel 

consumption. Nonetheless, the drawback is acceptable since the priority on the drilling rig 

is stability and safety of operations, especially those operations that heavily involve well 

control [19]. 
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6.1.1.6. Tripping simulation 

The simulation is run for the tripping operations over a period of 25000 seconds. 

query5 = 'SELECT "TOTAL POWER" AS TOT_POW, "Time", "START TIMER" AS ST, 
"REQUIRED ENGINES" AS ENGINES from Engine_Room_Database LIMIT 25000 OFFSET 
1720000'  
df = pd.DataFrame(pd.read_sql_query(query5, con)) 
power_list = df[['TOT_POW', 'Time', 'ST']].to_numpy() 
 
start_limit = 80  # Given in [%]    
start_time = 10  # Given in [s]      
stop_limit = 70  # Given in [%]       
stop_time = 200  # Given in [s]  
 
#  LINE PLOTS: MEASURED TOTAL POWER, ESTIMATED STOP TIME, ESTIMATED CHANGE IN 
NUMBER OF ENGINES 
plt.subplot(3, 1, 1) 
plt.plot(df['TOT_POW']) 
plt.title('TOTAL POWER IN kW') 
plt.subplot(3, 1, 2) 
plt.plot([item[-1] for item in simulate_running]) 
plt.title('ESTIMATED: STOP TIME') 
plt.subplot(3, 1, 3) 
plt.plot([item[2] for item in simulate_running]) 
plt.title('ESTIMATED: CHANGE IN NUMBER OF ENGINES') 
plt.show() 

 

Returns: 
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Figure 31. Simulation of tripping, period = 25000 seconds, STOP TIME = 200 

Source: Created by the author using the matplotlib library 

 

Figure 31 presents the result of the first simulation. 
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It is observed that the commissioning value of the STOP TIME parameter is not large enough 

to provide reliable performance during the tripping operations. As soon as the peak demand 

is over, the countdown to a load-dependent stop begins. Since the STOP TIME duration is 

shorter than the intervals between peak demands, a successful countdown to zero is reached 

approximately 50% of the time. As a result, a load-dependent stop is executed. Once the 

engine is stopped, the remaining engines continue load-sharing. The engines are then heavily 

exposed to the next sudden surge in power. As a result, engines are loaded to more than 

100% of the nominal load, which induces a high-load start. The cycle then repeats. 

The model estimates the following key values over a period of 25000 seconds: 

Table 5. Estimates of the second simulation under the commissioned parameters 

Changes in number of running engines: 22 

Total running hours [h]: 19.46 

Total fuel consumption [L]: 4871.62 

Total time spent at load higher than 100% [s]: 86 
 

Source: Created by the author using the MS Word software 

 

The same simulation is run again, but this time with the modified STOP TIME parameter. 

The rest of the parameters remain at their commissioned values: 

start_limit = 80  # Given in [%]     
start_time = 10  # Given in [s]     
stop_limit = 70  # Given in [%]       
stop_time = 650  # Given in [s]       
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Figure 32. Simulation of tripping, period = 25000 seconds, STOP TIME = 650 

Source: Created by the author using the matplotlib library 

 

It is observed that the modified STOP TIME value of 650 seconds was chosen correctly and 

that the intermittent starting and stopping of the engines is greatly reduced. Surges in total 

power are frequent enough to reset the countdown to zero before it is successfully reached. 
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As a result, a single load-dependent start and stop is executed. The total time spent at load 

greater than 100% is reduced from 86 seconds to 14 seconds. 

The model estimates the following key values over a period of 25000 seconds: 

Table 6. Estimates of the second simulation under the modified parameters 

Changes in number of running engines: 2 

Total running hours [h]: 20.76 

Total fuel consumption [L]: 4912.75 

Total time spent at load higher than 100% [s]: 14 
 

Source: Created by the author using the MS Word software 

 

There is a drawback in the form of increased running hours and increased fuel consumption, 

but with the benefit of significant reduction in the number of changes in running engines and 

the amount of time spent under high load. 
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7. COMPARISON OF VALUES AND PARAMETERS 
 

In this chapter, the simulations are run on the entire dataset. The outcomes are compared in 

order to find the optimal parameters for operating the automation system. 

First, the recorded values are compared against the values given by the developed model 

while set to run in a fully automatic mode under the commissioned parameters. Then, the 

simulation is repeated by running the model in a fully automatic mode but under the modified 

parameters. 

The parameters are presented in the form of comma separated values. For example, if the 

parameters are: 

• START LIMIT = 85 [%] 

• START TIME = 15 [s] 

• STOP LIMIT = 71 [%] 

• STOP TIME = 1599 [s] 

the table shows: 

• [85, 15, 71, 1599] 

Table 7. Results of simulations on the entire dataset 

 Measurements and 

Simulations 

Change in 

number of 

engines 

Total running 

hours [h] 

Total fuel 

consumption [L] 

Total time 

spent at load > 

100% [s] 

1. Measured 

[85, 15, 71, 1599] 

Unknown 4092 1175108 80 

2. Model (as measured) 

[85, 15, 71, 1599] 

108 4027 1173523 194 

3. Model (as commissioned) 

[80, 10, 70, 200] 

1084 3935 1170127 39909 

4. Model (adjusted) 

[85, 15, 71, 650] 

278 3937 1170875 1472 

 

Source: Created by the author using the MS Word software 

The outcomes are explained: 

The measured values (row 1) provided least time spent at load greater than 100%. This is 

expected, as the number of minimum required running engines was sometimes forced. Due 

to forcing of the number of running engines and unavailable data for forced inputs, it is not 

possible to accurately determine the actual changes in the number of running engines for the 

recorded data. However, the model estimates the number relatively close to 108 due to 

consistency of other values between row 1 and row 2. 
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The model as measured (row 2) is consistent with the recorded data from row 1. The model 

also successfully passes all benchmark test from chapter 5. It estimates slightly fewer 

working hours and less fuel consumption due to never being forced to run more engines than 

required by the calculation. Because the model never runs more engines than required by the 

calculation, the engines were more exposed to sudden surges in power, which results in an 

increase of the total time spent at loads greater than 100%. 

As commissioned, the model (row 3) shows unbalanced operations and erratic behaviour in 

terms of starting and stopping the engines. Since engines are started and stopped more often, 

the change in the number of running engines is the highest, followed by low running hours 

and low fuel consumption. Since the engines are often stopped, they are extremely exposed 

to sudden surges in power, accounting to a total of 39909 seconds spent at loads greater than 

100%. A total change in the number of running engines is estimated at 1084, which further 

stresses the switchgear [20] rated at 25000 lifetime cycles per circuit breaker. 

An adjusted model (row 4) yields the best overall results across the table. The change in the 

number of engines is steady at 278, averaged down to five changes per day. Total running 

hours and the fuel consumption are lower than the values in rows 1 and 2. Total time spent 

at loads greater than 100% is 1472 seconds, averaged down to 26 seconds per day, or 10.4 

seconds per day per engine. 

Values from row 4 serve as basis for further optimisation. 

Simulations are run repeatedly with different parameter values to fine-tune the overall 

system. 

The summary of simulations that yielded viable results is presented, together with the 

recorded values and the values of the default simulation (last two rows). 

Table 8. Summary of simulations 

 Parameters Change in number 

of running engines 

Total running 

hours [h] 

Total fuel 

consumption [L] 

Total time 

spent at load > 

100% [s] 

1. [90, 15, 70, 650] 216 3919 1170066 1878 

2. [90, 30, 70, 650] 216 3909 1169744 1945 

3. [90, 20, 70, 650] 214 3917 1170013 1864 

4. [90, 20, 65, 650] 70 4160 1176987 115 

5. [90, 20, 69, 650] 180 3950 1170989 503 

6. [90, 20, 71, 650] 254 3869 1168615 2913 

7. [88, 15, 68, 650] 136 4024 1173178 338 

8. [88, 15, 69, 650] 188 3981 1171969 486 

9. [88, 15, 70, 650] 230 3948 1171015 1847 
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10. [88, 15, 71, 650] 272 3900 1169604 2925 

11. [89, 15, 68, 650] 134 4021 1173083 342 

12. [89, 15, 69, 650] 188 3976 1171826 500 

13. [89, 15, 70, 650] 224 3944 1170923 691 

14. [89, 15, 71, 650] 262 3895 1169455 2708 

15. [91, 15, 68, 650] 126 3986 1171945 345 

16. [91, 15, 69, 650] 176 3940 1170671 500 

17. [91, 15, 70, 650] 214 3908 1169729 1880 

18. [91, 15, 71, 650] 254 3860 1168335 2716 

19. [92, 15, 68, 650] 124 3977 1171601 2231 

20. [92, 15, 69, 659] 174 3931 1170335 2345 

21. [92, 15, 70, 650] 208 3901 1169466 3707 

22. [92, 15, 71, 650] 250 3854 1168070 4638 

23. Measured Unknown 4092 1175108 80 

24. Model default 108 4027 1173523 194 

 

Source: Created by the author using the MS Word software 

A Pandas DataFrame containing the results of the simulations is created. All the simulation 

estimates are added, together with the measured data, where the number 90 is manually 

added in place of the unknown data. The outlier values from the commissioning simulation 

are not added, since the outlier would significantly affect the calculated mean. 
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Statistics on the DataFrame are described. 

Returns: 

 

A Python script that helps us choose the best solution based on the function minimum is 

written. Each solution has drawbacks either in the form of increased fuel consumption and 

running hours, or in the form of increased starting/stopping and high-load times. 
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Python function: 

df[‘Score’] = 0 
 
def rate_parameters(df): 
    for I in range(1,5): 
        for index, row in df.iterrows(): 
            if row[i] < df[i].mean(): 
                df[‘Score’][index] += 1 
    return df 
 

Function takes the DataFrame and iterates through every row. It compares every value of 

every row with the mean of the associated column. If the value is lower than the column 

mean, df[‘Score’] is incremented by 1. Rows with the highest Score are those containing the 

most values under the mean. 

Returns: 
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Results are observed. Two simulations yielded results where all the values are below the 

mean. The one with lower values is chosen as the best option. 

[91, 15, 69, 650] 176 3940 1170671 500 

 

 

7.1. SAVINGS AND DRAWBACKS 

 

Presented are the estimated differences for a period of one year by extrapolating from the 

model estimates. Measured data used in this study was acquired over a period of 55 days. 

The yearly totals are estimated as follows: 

Table 9. Annual projected savings and drawbacks 

 Measured Model Difference 

Change in number of 

running engines 

Unknown 1168 Unknown 

Total running hours [h] 27 156 26 147 -1009 

Total fuel consumption 

[L] 

7 798 444 7 768 998 -29 446 

Total CO2 emissions [T] 20 899  20 820 -79 

Total time spent at load > 

100% [s] 

530 3318 +2788 

 

Source: Created by the author using the MS Word software 

 

The differences are briefly discussed. 

The model estimates a total change in the number of running engines to 1168. The actual 

number of changes in the measured data is unknown due to forcing of the minimum required 

number of running engines, so it is not possible to present the difference. At an annual 1168 

Main SWBD circuit breaker cycles, it would take approximately 21 years per circuit breaker 

to reach the lifetime mechanical durability of 25000 cycles [21]. 

By lowering the total running hours by 1009, one 1000-hour service is avoided every year, 

saving man-hours and consumable parts [22]. A typical 1000-h service consists of oil and 

filter changes. 

Fuel consumption savings of 29446 litres accounts for a price of approximately 0.64 USD 

per litre (as of 01.06.2020, [23] meaning that it is possible to save approximately 18845 USD 

annually. Furthermore, a total reduction of CO2 emissions by 78.6 metric tonnes annually is 

estimated [24]. 
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There is a drawback in total time of running the engines at loads greater than 100%. At 3318 

seconds annually, the model approximates less than 10 seconds of high-loads per day, or an 

average of 3.6 seconds per engine daily, meaning that the drawback does not place a hard 

constraint on the solution. 

7.1.2. Suggestions for further improvements 

Four suggestions for further reduction in running hours and fuel consumption are presented. 

 

7.1.2.1. Development of communication channel between the drilling equipment and the 

PMS 

Since the PMS and the drilling package are both interfaced to the VMS (IAS) [25], a 

communication channel could be programmed with minimal or no modification to the 

existing physical infrastructure. 

Integrated in the drilling software, a choice between “Drilling mode” and “Tripping mode” 

already exists and is used by the operators on the drill floor. Drilling equipment functions 

differently when “Tripping mode” is selected, so the change in the selection could be 

broadcast to the IAS and the PMS, respectively. If the existing PLC installed on the PMS 

could detect the change in the selected mode, a new logic for running the engines could be 

activated, eliminating the need to manually force the minimum required number of engines, 

or the need to trade off performance for increased high-load times. 

The downside of this approach would be the requirement by different companies to modify 

the current state of the system. In this example, it would require the manufacturers of the 

drilling equipment, PMS and the AIS to collaborate, which could prove time consuming, 

expensive and challenging to organise. 

 

7.1.2.2. Upgrade of the DG cooling system 

Physical upgrade to the cooling system would allow the engines to run at higher loads for an 

extended amount of time. 

The main downside of this proposal is the requirement for a dry dock modification or a total 

shutdown of the drilling facility and a changeover to the emergency generator while the work 

is carried out. 
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7.1.2.3. Development of battery powered peak-shaving system 

An installation and commissioning of battery powered peak-shaving equipment on the 

drilling rig would allow the PMS to utilise the DGs only for base load power requirements 

[26]. The sudden surges in power would be met by batteries installed on the drilling facility. 

This would eliminate the need to run an additional engine for peak demand and would in 

turn save significant running hours, fuel consumption and high-load times. 

This solution would require a major overhaul on the existing system and would be the most 

expensive and complex, but it would yield best overall results. 

 

7.1.2.4. Development of the machine learning algorithm 

A development of a machine learning algorithm that would measure all the parameters and 

values continuously and then fine-tune the operational parameters would be a logical next 

step in the advanced development of the model presented in this study. Such an algorithm 

could then be implemented on-board the drilling rig in the existing IT infrastructure. 
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8. SUMMARY OF MATPLOTLIB GRAPHS 
 

All the matplotlib graphs written and used in this study are presented. 

 

# MEASURED: LINE PLOT DG1, DG2, STOP TIMER, DG3 
plt.subplot(4, 1, 1) 
df['DG1'].plot() 
plt.ylabel('Load [%]') 
plt.title('DG1 LOAD, DG2 LOAD, STOP TIME COUNTER AND DG3 LOAD') 
plt.subplot(4, 1, 2) 
df['DG5'].plot() 
plt.ylabel('Load [%]') 
plt.subplot(4, 1, 3) 
plt.plot([item[-1] for item in simulate_running]) 
plt.ylabel('Counter') 
plt.subplot(4, 1, 4) 
df['DG4'].plot() 
plt.ylabel('Load [%]') 
plt.show() 
 

 

 

 
#  LINE PLOTS: MEASURED TOTAL POWER, ESTIMATED STOP TIME, ESTIMATED CHANGE IN 
NUMBER OF ENGINES 
plt.subplot(3, 1, 1) 
plt.plot(df['TOT_POW']) 
plt.title('TOTAL POWER IN kW') 
plt.subplot(3, 1, 2) 
plt.plot([item[-1] for item in simulate_running]) 
plt.title('MODEL: STOP TIME') 
plt.subplot(3, 1, 3) 
plt.plot([item[2] for item in simulate_running]) 
plt.title('MODEL: CHANGE IN NUMBER OF ENGINES') 
plt.show() 
 
 
 
 
#  START TIME LINE PLOTS 
plt.subplot(2, 1, 1) 
plt.plot(df['ST']) 
plt.title('MEASURED: START TIME') 
plt.subplot(2, 1, 2) 
plt.plot([item[-1] for item in simulate_running]) 
plt.title('MODEL: START TIME') 
plt.show() 
 
 
 
 
#  DG1 HISTOGRAM 
data=[[item[3][0,0] for item in simulate_running]] 
arr=plt.hist(data, bins=bins, log=True, range=[-1,150]) 
for i in range(bins): 
    plt.text(arr[1][i],arr[0][i],str(arr[0][i])) 
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plt.title('MODEL: DG1 LOAD') 
plt.show() 
 
 
 
 
# LINE SUBPLOTS OF DG1 MEASURED AND DG1 ESTIMATED LOAD 
plt.subplot(2, 1, 1) 
plt.plot(df['DG1']) 
plt.title('MEASURED: DG1 LOAD') 
plt.subplot(2, 1, 2) 
plt.plot([item[3][0,0] for item in simulate_running]) 
plt.title('MODEL: DG1 LOAD') 
plt.show() 
 
 
 
 
#  LINE SUBPLOTS OF MEASURED AND ESTIMATED CHANGE IN NUMBER OF ENGINES 
plt.subplot(2, 1, 1) 
plt.plot(df['ENGINES']) 
plt.title('MEASURED: CALCULATION OF REQUIRED ENGINES') 
plt.subplot(2, 1, 2) 
plt.plot([item[2] for item in simulate_running]) 
plt.title('MODEL: CHANGE IN NUMBER OF ENGINES') 
plt.show() 
 
 
 
 
# HISTOGRAM DG1 MEASURED AND ESTIMATED 
plt.subplot(2, 1, 1) 
arr=plt.hist(df['DG1'], bins=bins, log=True, range=[-1,160]) 
for i in range(bins): 
    plt.text(arr[1][i],arr[0][i],str(arr[0][i])) 
plt.title('MEASURED: DG1 LOAD') 
plt.subplot(2, 1, 2) 
data=[[item[3][0,0] for item in simulate_running]] 
arr=plt.hist(data, bins=bins, log=True, range=[-1,160]) 
for i in range(bins): 
    plt.text(arr[1][i],arr[0][i],str(arr[0][i])) 
plt.title('ESTIMATED: DG1 LOAD') 
plt.show() 
 
 
 
 
# MEAN LOAD PER ENGINE MEASURED AND ESTIMATED 
plt.subplot(2, 1, 1) 
df['MEAN POWER'] = df['TOT_POW'] / df['ENGINES'] / 1830 * 100 
arr = plt.hist(df['MEAN POWER'], bins=bins, log=True, range=[-1, 160]) 
for i in range(bins): 
    plt.text(arr[1][i], arr[0][i], str(arr[0][i])) 
plt.title('MEASURED: MEAN LOAD PER ENGINE') 
plt.subplot(2, 1, 2) 
data = [[item[4] for item in simulate_running]] 
arr = plt.hist(data, bins=bins, log=True, range=[-1, 160]) 
for i in range(bins): 
    plt.text(arr[1][i], arr[0][i], str(arr[0][i])) 
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plt.title('ESTIMATED: MEAN LOAD PER ENGINE') 
plt.show() 
 
 
# HISTOGRAM 5X ENGINES ESTIMATED 
for i in range(1, 6): 
    plt.subplot(5, 1, i) 
    data = [[item[3][0, i-1] for item in simulate_running]] 
    arr=plt.hist(data, bins=bins, log=True, range=[-1,130]) 
    for i in range(bins): 
        plt.text(arr[1][i], arr[0][i], str(arr[0][i])) 
    plt.xlabel('Load [%]') 
plt.title('MODEL: ALL DG HISTOGRAMS') 
plt.show() 
 
  



77 

 

9. CONCLUSION 
 

During this study, the author has demonstrated the operation of PMS on an offshore drilling 

rig. 

The PMS simulator in the form of Python program was developed. Additional libraries to 

handle large sets of data, draw graphs and describe statistics on the data have been used. 

Benchmark tests were run to prove that the model is viable and that its estimations are 

accurate. 

The common issues of unreliable performance during tripping and POOH operations was 

explained and a proposed solution to these issues in the form of an adjustment of the 

operational parameters was given. Simulations under default and modified parameters were 

run. Different estimates were compared. Potential annual savings were presented. 

Notable observations 

• The commissioning parameters, particularly the STOP TIME parameter set at 200 

seconds yield poor performance and lead to issues during tripping and POOH 

operations. 

• The methods taken by the crew to mitigate the issues were focused on the change in 

operational parameters, but without the developed simulation model it was not 

possible to fine-tune and test the parameters. 

• Adjusting the operational parameters to higher highs and lower lows always yields 

increased savings in terms of running hours and fuel consumption, but at an expense 

of change in the number of engines and time spent at loads greater than 100%. 
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ABBREVIATIONS AND TECHNICAL TERMS 
 

Abbreviations: 

 

• DB – Database  

• DG – Diesel Generator 

• DP – dynamic positioning 

• HMI – Human Machine Interface 

• PLC – Programmable Logic Controller 

• PMS – Power Management System 

• VFD – Variable Frequency Drive 

• POOH – pulling out of the hole (oil drilling operation) 

 

Technical terms: 

 

• Python – high-level general-purpose programming language. 

• SQLite – relational database management system. 

• Matplotlib – plotting library for the Python programming language. 

• Numpy – fundamental package for scientific computing with Python. 

• Pandas – software library written for the Python programming language for data 

manipulation and analysis. 

• DataFrame – Two-dimensional, size-mutable, potentially heterogeneous tabular 

data. 

• DB Browser for SQLite – visual, open source tool to create, design, and 

edit database files  

• Drawworks – primary hoisting machinery component of a rotary drilling rig. 

• Topdrive – mechanical device on a drilling rig that provides clockwise torque to the 

drill string to drill a borehole. 

• Baseload – the permanent minimum load that a power supply system is required to 

deliver. 

• Derrick – integrated system that drills wells, such as oil or water wells, in the Earth’s 

subsurface. 

• Tripping – physical act of pulling the drill string out of the wellbore and then running 

it back in. 

• Jackup rig – a type of mobile platform that consists of a buoyant hull fitted with a 

number of movable legs. 
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