Čulina, Antonio

Master's thesis / Diplomski rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Rijeka, Faculty of Maritime Studies, Rijeka / Sveučilište u Rijeci, Pomorski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:187:026423

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2021-05-20

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of Maritime Studies - FMSRI Repository
SVEUČILIŠTE U RIJECI
POMORSKI FAKULTET

ANTONIO ČULINA
TEHNOLOGIJE UKLANJANJA ULJNIH ONEČIŠĆENJA MORA
DIPLOMSKI RAD

Rijeka, rujan 2020.
TEHNOLOGIJE UKLANJANJA ULJNIH ONEČIŠĆENJA MORA

SEA OIL POLLUTION REMOVAL TECHNOLOGIES

DIPLOMSKI RAD

Kolegij: Tehnologija uklanjanja onečišćenja mora
Mentor: Doc. dr. sc. Đani Šabalja
Student: Antonio Čulina
Studijski program: Nautika i tehnologija pomorskog prometa
JMBAG: 01150639155

Rijeka, travanj 2020.
IZJAVA

Kojom izjavljujem da sam diplomski rad s naslovom NASLOV DIPLOMSKOG RADA izradio samostalno pod mentorstvom doc. dr. sc Đani Šabalja. U radu sam primijenio metodologiju znanstvenoistraživačkog rada i koristio literaturu koja je navedena na kraju diplomskog rada. Tuđe spoznaje, stavove, zaključke, teorije i zakonitosti koje sam izravno ili parafrazirajući naveo u diplomskom radu na uobičajen, standardan način citirao sam i povezao s fusnotama i korištenim bibliografskim jedinicama. Rad je pisan u duhu hrvatskoga jezika.

Suglasan/na sam s objavom diplomskog rada na službenim stranicama.

Student

Antonio Čulina
Sadržaj
SAŽETAK..I
SUMMARY ..I
1. UVOD .. 1
 1. 1. PROBLEM, PREDMET I OBJEKT ISTRAŽIVANJA ... 2
 1. 2. RADNA HIPOTEZA ... 2
 1. 3. SVRHA I CILJ ISTRAŽIVANJA ... 2
 1. 4. ZNANSTVENE METODE ... 2
 1. 5. STRUKTURA RADA .. 2
2. ULJE ... 3
 2. 1. KARAKTERISTIKE ULJA ... 3
 2. 2. PONASANJE ULJA U DODIRU S Vodom ... 5
 2. 3. ŠIRENJE .. 5
 2. 4. EVAPORACIJA .. 6
 2. 5. DISPERZIJA .. 7
 2. 6. EMULZIFIKACIJA .. 7
 2. 7. OTAPANJE .. 8
 2. 8. OXIDACIJA ... 8
 2. 9. SEDIMENTACIJA ... 8
3. IZLIJEVANJE ULJA KROZ POVIJEST .. 8
4. POSLJEDICE .. 12
5. PRAĆENJE I MOTRENJE ULJNIH MRLJA ... 14
 5. 1. SATELITSKO MOTRENJE ... 17
6. TEHNOLOGIJE UKLANJANJA ULJA S MORA ... 18
 6. 1. BRANE .. 20
 6. 2. SKIMERI .. 24
 6. 3. MATERIJALI ZA UPIJANJE ULJA ... 27
 6. 4. IN-SITU PALJENJE ... 29
 6. 5. DISPERZANTI ... 30
 6. 6. BIOREMEDIJACIJA ... 33
 6. 7. OBALNO ČIŠĆENJE ... 34
 6. 8. TEHNIKE ČIŠĆENJA OBALE ... 35
7. PROPISI ZA SPREČAVANJE ONEĆIŠĆENJA MORA ULJIMA 37
7. 2. MEĐUNARODNA KONVENCIJA O GRADANSKOJ ODGOVORNOSTI ZA ŠTETU OD ONEČIŠĆENJA NAFTOM .. 39
7. 3. MEĐUNARODNA KONVENCIJA O SPREČAVANJU ONEČIŠĆENJA MORA ULJIMA- OILPOL (LONDON, 1954.) .. 40
8. ZAKLJUČAK ... 40
LITERATURA ... 42
POPIS SLIKA ... 44
SAŽETAK

Ulje je složen spoj ugljikovodika gdje najveći udio u njima čine vodik i ugljik. U doticaju s morem ulje prolazi kroz više raznih fizikalnih i kemijskih promjena. Zagađenje mora uljima i njegova prevencija je jedan od glavnih aspekata za istraživanje u pomorskom svijetu. Koliko god kroz povijest se sprečavanje zagađenja unaprijedilo ono se i dan danas pojavljuje. Upravo zbog toga uvedene su određene mjere počevši od pravnog aspekta pa sve do tehnologija koje omogućuju preventivu i zbrinjavanje ako dođe do onečišćenja mora. Sa strane pravnog aspekta postoje međunarodni ugovori koji reguliraju promet uljima. Ako dođe do izljeva tada se oslanja na tehnologiju za uklanjanje ulja iz mora. Neki od načina za prevenciju daljnog širenja je pozicioniranjem brana s obzirom na lokaciju mrlje, smjera struje i vjetra. Sljedeći korak je uklanjanje putem sakupljača, disperzanata ili tvari koje mogu u sebe upiti određenu količinu ulja te ako je potrebno može se primijeniti metoda paljenja ulja s površine mora. Ulje koje je prikupljeno nakon nezgode, a nije onečišćeno drugim tvarima moguće je vratiti u ponovno korištenje.

Ključne riječi: ulje, nezgoda, prevencija, izljev.

SUMMARY

Oil is a complex compound of hydrocarbons where the largest share in them is hydrogen and carbon. In contact with the sea, the oil undergoes a number of different physical and chemical changes. Oil pollution of the sea and its prevention is one of the main aspects for research in the maritime world. As much as pollution prevention has improved throughout history, it still appears today. That is why certain measures have been introduced, starting from the legal aspect, all the way to technologies that enable prevention and disposal in the event of marine pollution. From the legal point of view, there are international agreements regulating the trade in oils. If a spill occurs then it relies on technology to remove oil from the sea. One way to prevent further spread is by positioning the dam with respect to the location of the stain, the direction of the current, and the wind. The next step is to remove through a collector, dispersant or substance that can absorb a certain amount of oil and if necessary, the method of burning oil from the sea surface can be applied. Oil collected after an accident and not contaminated with other substances can be returned for reuse.

Keywords: oil, accident, prevention, spill.
1. UVOD

Tehnologija napreduje iz dana u dan, a s njom se pokušava i umanjiti opasnost u svim aspektima plovidbe uključujući i prijevoz ulja. Prilikom izlijeva ulje sve što dodirne postane štetno za biljni i životinjski svijet morskog prostranstva. Položaj izlijevanja nafte također je bitan faktor koji utječe na štetno djelovanje samog izlijeva. Sitne čestice ulja slobodno putuju kroz more te nakon nekog vremena počnu tonuti u morski svijet. Također iste čestice ulja mogu dosegnuti i morske plaže gdje se slojevito talože na svaku stijenu i zrno pijeska. Izljevi ulja čine 12% svih ulja koje završe u moru. Ostatak završi prilikom putovanja ili curena prilikom prekrcaja. Utjecaj ulja na okoliš može se odvijati u smjeru da kemijsko onečišćenje i njegova otrovnost utječe na razne funkcije živih organizama i to na bazi stanica, ekološke promjene tj. gubitak ključnih organizama za to područje te pogodovanje nastanjivanja nekoj drugoj vrsti, indirektni utjecaji kao što je gubitak određenog morskog prostora i skloništa što rezultira gubitkom bitnih ekološki vrsta. Ulje i njegova razgradnja može potrajati mjesecima ili čak godinama. Iako se razgrađuje prirodno ako dođe do velike količine izlijeva u more potrebno je uplitanje ljudske ruke kako bi se uspješno saniralo. Znanstvena procjena problema onečišćenja naftom prvi je a možda i najteži zadatak za određivanje njezinog opsega na svjetskoj osnovi. Nažalost otklanjanjem jednog problema nailazi se na drugi. Plovidba kao aktivnost je potencijalna opasnost za okoliš te ljudski i životinjski svijet. Obalne države su stoga zadužene za provođenje pravila kako bi se osigurala sigurna plovidba na području njihove jurisdikcije. Morski svijet je vrlo kompleksan, a njegov sastav i rasprostranjenost je ključan za njegovo normalno funkcioniranje. Rizik može biti sveden na minimum, ali nikad iskorišten stoga se kroz povijest čovječanstvo trudi stvoriti razne propise, tehnologije i organizacije koje bi taj rizik i dalje držale na minimumu.
1. 1. PROBLEM, PREDMET I OBJEKT ISTRAŽIVANJA

Problematika istraživanja je definiranje prihvatljive metode kojom će se ukloniti određena vrsta ulja. S obzirom na to da postoje razna onečišćenja tako postoje i različite metode za njihovo uklanjanje. Predmet istraživanja su sredstva kojim se uklanjaju uljna onečišćenja uzevši u obzir lokaciju na kojoj je nastalo onečišćenje, vremenskim uvjetima i količini izljeva. Objekt istraživanja je ulje, koja su mu svojstva i njegovi štetni ishodi.

1. 2. RADNA HIPOTEZA

1. 3. SVRHA I CILJ ISTRAŽIVANJA

Svrha i cilj rada je definirati i usporediti metode i načine uklanjanja različitih uljnih onečišćenja, korisnost istih te njihovo djelovanje na ulje. Definicija ulja, procesi prilikom kontakta ulja i mora, kako spriječiti izljev, ako dođe do izljeva što činiti, skladištenje i odlaganje izlivenog ulja, pravno popraćeni aspekti koji definiraju transport ulja i tko snosi posljedice ako dođe do havarije tj. izljeva ulja.

1. 4. ZNANSTVENE METODE

Metoda analize i sinteze, induktivna i deduktivna metoda te metoda kompilacije.

1. 5. STRUKTURA RADA

Uvodni dio rada navodi problematiku, predmet i objekt istraživanja, radnu hipotezu, svrhu i ciljeve istraživanja te znanstvene metode. Drugi dio rada odnosi se na ulja. Općenito o uljima, izljevi koji su se dogodili kroz povijest, karakteristikama izljeva te posljedice istih. Treći dio govori o tehnologijama za uklanjanje ulja, kako pojedina tehnologija djeluje s obzirom na različita svojstva ulja te sakupljanje ulja s morskih površina. Četvrti dio se dodiruje pravnog aspekta i govori o propisima koji sprečavaju onečišćenje kao što su Marpol
anex 1 i civil liability convention. Posljednji dio je zaključak u kojem se daje osvrt na sintezu cjelokupnog istraživanja.

2. ULJE

Sirova nafta i njeni proizvodi su rašireni zagađivači vode i tla. "Međunarodne statistike koje definiraju veličinu izlijeva prilikom nezgode tvrde da je većina izljevanja zapravo mala tj. manja od 7 tona. Veće nesreće koje se događaju u naftnoj industriji samo su manji dio ukupne količine ulja koja završi u moru."

Prirodni utjecaji koji utječu na promjene ulja su spori stoga se izljevi ne prepuštaju prirodnom procesu razgradnje već se primjenjuje neka od postojećih metoda uklanjanja ulja koja za dati slučaj najviše odgovara. Nakon ispuštanja u more izljev se podvrgava vremenskim utjecajima te kemijskim, fizičkim i biološkim procesima.

2. 1. KARAKTERISTIKE ULJA

Sirova nafta s obzirom na svoje podrijetlo razlikuje se u njenim fizikalnim i kemijskim svojstvima. Glavna svojstva koja utječu na ponašanje i zadržavanje prilikom izljeva su specifična gravitacija, karakteristike destilacije, tlak, viskoznost i točka zgrušavanja. Navedena svojstva ovise o kemijskoj kompoziciji kao što je odnos promjenjivih komponenti i sadržaj asfaltena, smole i voska.

"Specifična gravitacija ili relativna gustoća ulja je njezina gustoća u odnosu na čistu vodu, koja ima specifičnu gravitaciju 1. Većina ulja su manje gusta ili su lakša u odnosu na morsku vodu čija specifična gravitacija iznosi 1.025. The American Petroleum Institute gravity scale tj. API"

se koristi za opisivanje specifične gravitacije sirove nafte i naftnih produkata pomoću sljedeće formule:

\[\text{API} = \frac{141.5}{\text{specific gravity}} - 131.5 \]

Definiranjem sposobnosti ulja da li se zadržava na površini ili ne, specifična gravitacija također može dati indikaciju ostalih svojstava ulja. Npr. ulja s niskom specifičnom

1 Irena B. Ivshina 2015, "Environmental Science: Processes & Impacts", Institute of Ecology and Genetics of Microorganisms Issue 7, Abstract
2 TIP 02, 2011., "Fate of marine oil spills", ITOPF, UK.
gravitacijom (visok API) sadrže visoke količine promjenjivih komponenti i male su viskoznosti.

Tablica 1. Fizičke karakteristike 4 specifične vrste sirove nafte

<table>
<thead>
<tr>
<th>Grupa</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origijna</td>
<td>Arabian Super Light</td>
<td>Brent</td>
<td>Cabinda</td>
<td>Meray</td>
</tr>
<tr>
<td>API</td>
<td>50.7</td>
<td>37.9</td>
<td>32.5</td>
<td>17.3</td>
</tr>
<tr>
<td>SG at 15°C</td>
<td>0.79</td>
<td>0.83</td>
<td>0.86</td>
<td>0.96</td>
</tr>
<tr>
<td>Wax content</td>
<td>12%</td>
<td>No data</td>
<td>10.4%</td>
<td>10%</td>
</tr>
<tr>
<td>Asphaltenes</td>
<td>7%</td>
<td>0.5</td>
<td>0.16</td>
<td>5%</td>
</tr>
<tr>
<td>Pour point</td>
<td>-39°C</td>
<td>-3°C</td>
<td>12°C</td>
<td>-21°C</td>
</tr>
</tbody>
</table>

Izvor: "Fate of marine oil spills", ITOPF, UK.

Tlak para pruža daljnje indikacije isparavanja ulja. Tlak para veći od 3 kPa je uobičajena kriterija kako bi moglo doći do isparavanja u većini slučajeva. Iznad 100 kPa supstanca se ponaša kao plin.

Grafikon 1. Odnos viskoznosti / temperature 4 vrste sirove nafte

Izvor: "Fate of marine oil spills", ITOPF, UK.
Viskoznost ulja je njegov otpor protoku. Jako viskozna ulja teku puno lakše od onih koja su manje viskozna. U navedenoj tablici prikazan je odnos viskoznosti i temperature kod različitih vrsta ulja.

Točka zgrušavanja je temperatura ispod koje ulje više nije tekuće. "Padom temperature komponente voska koje se nalaze u nafti počinju stvarati kristalnu strukturu. Taj proces se odvija sve dok ne dođe do točke zgrušavanja."3 Primjer ovom slučaju se može vidjeti u grafikon br. 1 promatrajući Cabinda ulje. Prilikom hlađenja na temperaturi od 30 C viskoznost raste sporo, ali nakon što dosegne točku zgrušavanja na temperaturi od 20 C počinje se zgrušavati eksponencijalno.

2. 2. PONAŠANJE ULJA U DODIRU S VODOM

Relativnost odvijanja pojedinog procesa varira s vremenom. U sljedećem primjeru se prikazuje izljev sirove nafti pod normalnim morskim uvjetima. Uz procese koji se odvijaju u tom trenutku utjecaj također imaju vjetar i morske struje.

2. 3. ŠIRENJE

U trenutku kontakta ulja i mora odmah dolazi do širenja po morskoj površini. Brzina kojom se taj proces odvija ovisi velikim dijelom o viskoznosti i količini izlivenog ulja. Nisko viskozna ulja šire se puno brže. Ulja se u pravilu šire u jednoj jedinstvenoj mrlji, ali imaju tendenciju pucanja nakon određene veličine širenja. Razlog je smanjivanje površinskog sloja ulja. Popratno tome mijenjaju se i boje sukladno debljini sloja. Crna boja je naznaka da je sloj velike debljine, tamno smeđa ukazuje da se mrlja proširila i preliveno siva se uobičajeno lokalizira na rubovima površinske mrlje.

2. 4. EVAPORACIJA

Što komponente brže isparavaju to će ulje brže ispariti u atmosferu. Faktori brzine isparavanja su temperatura, gibanje mora i brzina vjetra. U principu ulja čije komponente imaju točku ključanja ispod 200 °C isparit će u roku od 24 sata. Rafinirani proizvodi kao što su kerozin i benzin mogu ispariti u potpunosti unutar par sati.
2. 5. DISPERZIJA

Valovi i turbulentije na površini mora mogu uzrokovati razbijanje izljeva na male čestice i kapljice. Jedan dio čestica ostat će raspršen pri gornjoj razini mora dok će ostatak čestica imati tendenciju vraćanja na površinu i ponovno formirati mrlju. "Disperzirane kapljice ulja imaju veću površinu naspram volumena plutajućeg ulja. To potiče ostale prirodne procese kao što je otapanje, biodegradacija i sedimentacija. "4

2. 6. EMULZIFIKACIJA

Emulzija nastaje kada se dvije tekućine spoje i pri tome jedna ostane zadržana u drugoj. Emulzifikacija sirove nafte odnosi se proces kada se čestice morske vode postanu zadržane u ulju. Ova vrsta emulzije je vrlo gusta i zadržava se puno dulje na površini od obične sirove nafte.

Slika 3. Nastala emulzija nakon havarije broda "Exxon Valdeza"

Izvor: Grounding of Exxon Valdez http://www.daveleblanc.ca/exvaldez.htm (25.07.2020.)

2. 7. OTAPANJE

Komponente koje su najviše topive u morskoj vodi su lagani ugljovodični spojevi kao što su benzen i toluen. Spojevi poput ovih su isti oni koji najprije isparavaju. "Postupak isparavanja je brži 10-1000 puta od otapanja." \(^5\)

2. 8. OKSIDACIJA

Ulja kemijski reagiraju s kisikom na dva načina:

1. Razgradnja u topive produkte,
2. Formiranjem u konzistentnu masu tj. katran.

Ovaj proces je potpomognut sunčevom svjetlosti, ali je vrlo spor čak i u prisutnosti jake sunčeve svjetlosti. Masa katrana nastaje oksidacijom debelih slojeva ulja velike viskoznosti.

2. 9. SEDIMENTACIJA

3. IZLIJEVANJE ULJA KROZ POVIJEST

Čovječanstvo koristi naftu tisućama godina od medicinskih svrha sve do ratnih pothvata. Znatni skok u upotrebi nafta započinje Industrijskom revolucijom kada zamjenjuje drvo, ugljen i ostale izvore energije. Kako je nafta sve više popularizirana njezini rafinirani produksi počinju se koristiti kao pokretači automobila, brodova i ostalih mehaničkih sustava. Rezultat masovnog korištenja ovog oblika energije sa sobom je ostavio velika onečišćenja obala, ribarskih zona, smrt biljnog i životinjskog svijeta na kopnu i moru. Najveći izljevi ispustili su na desetke milijuna litara ulja u more. Neke od najznačajnijih havarija su:\(^6\):

Sve gore navedene nesreće variraju u količini izlivenog ulja, ali zbog različitih udjela lakših molekula ugljikovodika omogućilo je da izljev ispari. Tako npr. nakon havarije "SEA EMPRESS" izračunato je da se 40% razlivenog ulja raspršilo, a u slučaju "Deepwater Horizon" procjenjuje se da je 37% ispuštenog ulja isparilo, raspršilo ili otopilo. U sljedećoj tablici prikazani su i uspoređeni podaci nastalih havarija s obzirom na ispuštenu količinu sirove i rafinirane nafte.

<table>
<thead>
<tr>
<th>Year</th>
<th>Incident name</th>
<th>Crude Oil Spills</th>
<th>Fuel Oil Spills</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>AMOCO CADIZ</td>
<td>227,000</td>
<td>13,500</td>
</tr>
<tr>
<td>1989</td>
<td>EXXON VALDEZ</td>
<td>37,000</td>
<td>2,100</td>
</tr>
<tr>
<td>1995</td>
<td>SEA PRINCE</td>
<td>5,500</td>
<td>6,200</td>
</tr>
<tr>
<td>1993</td>
<td>BRAER</td>
<td>86,200</td>
<td>3,600</td>
</tr>
<tr>
<td>1996</td>
<td>SEA EMPRESS</td>
<td>72,370</td>
<td>10,900</td>
</tr>
<tr>
<td>2004</td>
<td>ATHOS I</td>
<td>900</td>
<td>2,600</td>
</tr>
<tr>
<td>2007</td>
<td>HEBEI SPIRIT</td>
<td>10,900</td>
<td>10,000</td>
</tr>
<tr>
<td>2010</td>
<td>DEEPWATER</td>
<td>780,000</td>
<td>780,000</td>
</tr>
</tbody>
</table>

Tablica 2. Usporedba havarija i količina izlivene nafte

Izvor: Tim Wadsworth, ITOPF., "Comparison and assessment of waste generated during oil spills"
Grafikon 2. Ukupna količina sakupljenog onečišćenja kroz 18 nezgoda

Izvor: Tim Wadsworth, ITOPF., "Comparison and assessment of waste generated during oil spills"

U prethodnom grafu prikazana je ukupna količina prikupljenog otpada. Od 18 nezgoda 6 incidenata rezultiralo je velikom količinom izljeva više od 50,000 tona. Narednih 5 je imalo količinu izljeva između 25-50,000 tona. Preostalih 7 je bilo ispod 25,000 tona.
Grafikon 3. Odnos izlivene količine nafte i sakupljene količine otpada

Izvor: Tim Wadsworth, ITOPF., "Comparison and assessment of waste generated during oil spills"

"Tablica i grafikoni pokazuju da količina otpadnog materijala koja je nastala prilikom nezgode nije u izravnoj proporciji s količinom prosute nafte."\(^7\) Svaki incident je jedinstven splet okolnosti i faktora koji utječu na količinu prikupljene nafte i otpada.

\(^7\) : Tim Wadsworth, ITOPF., "Comparison and assessment of waste generated during oil spills", p.1651
4. POSLJEDICE

Karakteristike izljeva su bitne kako bi se moglo definirati do koje su mjere štetne za okoliš. "Izljev velikog volumena i velike perzistencije kao što je Heavy Fuel Oil (HFO), ima potencijal za onečišćenje obala. Usprkos tome iz aspekta toksičnosti ova vrsta goriva nije toliko opasna. Razlog tome je visok stupanj viskoznosti i slaba topivost u vodi. S druge strane kerozin i ostala ulja sličnih karakteristika imaju puno znatniji biološko štetni utjecaj."

Pozitivna strana ovih vrsta goriva je brzo isparavanje i disperzija što u konacnici može značiti da su laka ulja manje štetnija od teških.

Slika 4. Utjecaj različitih vrsta goriva u intervalu od toksičnosti do zagušivanja

Izvor: "Effects of oil pollution on the marine environment", ITOPF, UK

Ulje ima znatan utjecaj na plankton, ribe, ptice, sisavce, reptile i ponajviše na koralje. Koraljni grebeni su izrazito bogati i raznoliki morski ekosustavi. Koralji su vrlo osjetljivi organizmi i potreban je dugi vremenski za oporavak." Najveću štetnost na koralje nanosi disperzirano ulje, pogotovo kad su jaki valovi koji potpomažu prirodnoj disperziji. Također upotreba disperzanata se treba izbjegavati ako je izljev u blizini koraljnog grebena." U sljedećoj tablici prikazan je period potreban za obnovu pojedinih staništa.

\[8 \text{ITOPF, "Effects of oil pollution on the marine environment", UK p. 3}\]

\[9 \text{ITOPF, "Effects of oil pollution on the marine environment", UK p.4}\]
Tablica 3. Period potreban za obnovu pojedinog staništa

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Recovery period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plankton</td>
<td>Weeks/months</td>
</tr>
<tr>
<td>Sand beaches</td>
<td>1 – 2 years</td>
</tr>
<tr>
<td>Exposed rocky shores</td>
<td>1 – 3 years</td>
</tr>
<tr>
<td>Sheltered rocky shores</td>
<td>1 – 5 years</td>
</tr>
<tr>
<td>Saltmarsh</td>
<td>3 – 5 years</td>
</tr>
<tr>
<td>Mangroves</td>
<td>10 years and greater</td>
</tr>
</tbody>
</table>

Izvor. "Effects of oil pollution on the marine environment", ITOPF, UK

Iz tablice se može vidjeti da je za mangrove šume potrebno duplo više vremena za oporavak nego za bilo koja druga staništa. To su stabla i grmovi koji rastu u slanoj vodi na rubu tropskog mora.

Slika 5. Utjecaj ulja na mangrovu šumu

Izvor: "Effects of oil pollution on the marine environment", ITOPF, UK

Uljne utječe štetno na njih tako da blokira kisik korištenju što rezultira njihovim uvenućem što se može vidjeti iz gore navedene slike.
5. PRAĆENJE I MOTRENE ULJNIH MRLJA

Praćenje mrlje može biti provedeno na različite načine sukladno potrebama i situaciji. Prvi korak nakon izljeva je dokumentiranje količine ulja koje je izliveno na određenom području.

Izviđanje mrlje se obavlja pomoću aviona ili brodova. Pomoću toga se određuje smjer i veličina mrlje te se sukladno tome donosi odgovarajuća odluka o daljnjem pristupanju situaciji. Prilikom motrenja fokusira se na sljedeće ciljeve:

- Određivanje izvora zagađenja,
- Procjena postojanja rizika za ljudski prehrambeni lanac,
- Procjena kontaminacije ribe,
- Mjerenje razine ugljikovodika u sedimentu ili vodi,
- Identifikacija potrebnih održivih mjera kako bi se potakla i održala obnova okoliša,
- Prikaz evaluacije štetnosti izljeva, njegove analize i da su poduzete mjere za obnovu okoliša.

Temelj motrenja mora biti pružanje pouzdanih, objektivnih i korisnih informacija koje daju odgovor na rješavanje problematike izljeva u okolišu. Postoje 3 vrste pristupa za prikupljanje podataka.

1. Usporedba stanja prije i nakon izljeva na određenom području,
2. Usporedba podataka između onečišćenih i čistih prostora,
3. Promatranje promjena u određenom intervalu.

"Motrenje stvara odnos između pravnog, operativnog i financijskog aspekta nesreće. Za kvalitetno motrenje potrebno je da cijeli stručni kadar surađuje. To se odnosi na kombiniranje dobivenih rezultata da bi se postiglo jedno rješenje."10 Problem se može stvoriti kod interpretacije rezultata ako ih je više.

Program promatranja se započinje jasnim definiranjem objekta studije. Objekt će definirati područje i sadržaj programa. Nakon što je dogovoreno objekt istraživanja, slaže se detaljni plan promatranja koji će pružiti željene podatke. Definirat će se potreban broj uzoraka, učestalost, vrsta i područje iz kojeg će se uzimati uzorci. Primjer jednoj takvoj vrsti promatranja je situacija u kojoj se proučava koncentracija ulja na nekom području. Uzorci i testiranja će se vršiti sve dok se udio ulja ne svede do minimuma tj. do razine koja je prethodno bila na tom području. U sljedećoj tablici prikazan je primjer i cilj jednog promatranja.

Tablica 4. Promatranje, ciljevi i aktivnosti u procesu pribavljanja potrebnih podataka

<table>
<thead>
<tr>
<th>Location</th>
<th>Monitoring objective</th>
<th>Monitoring activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>South America</td>
<td>To determine the extent of oil contamination and the need for continued clean-up measures.</td>
<td>Extensive boat and shoreline surveys were conducted to document visually the presence and absence of oil on the water and the extent of shoreline oiling. Oiled sites requiring clean-up were identified and appropriate clean-up techniques recommended. Continual observations made during the clean-up operations and a final inspection once the work had been completed allowed for recommendations to be made regarding appropriate termination of clean-up work.</td>
</tr>
<tr>
<td>Europe</td>
<td>To establish the level of oil contamination in sediments at key sites oiled as a result of the incident.</td>
<td>Sediment samples were collected from beaches and shallow waters from key sites known to have been oiled during the incident over a period of 3 months. Samples were analysed for THC and PAHs. The results of the monitoring showed that most of the sediment was relatively unaffected by the oil spill.</td>
</tr>
<tr>
<td>Indian Ocean</td>
<td>To ascertain whether drinking water in water wells located on the shoreline had been contaminated as a result of the loss of the cargo of phosphate and bunker fuel.</td>
<td>Samples of water were taken from wells along the contaminated shore and from wells outside of the area and analysed for phosphate, PAHs and heavy metals. Comparison of the average values for water taken from the reference wells and wells in the contaminated area showed no significant difference, allowing the conclusion that the incident had not caused contamination of the local drinking water supply.</td>
</tr>
<tr>
<td>Atlantic Ocean</td>
<td>To establish the spatial extent and duration of potential contamination to a fishery.</td>
<td>A sampling programme was instigated to collect species samples from the affected area and from reference sites and over a number of months. Samples were analysed to monitor depuration rates of PAHs and compared with background levels reached.</td>
</tr>
</tbody>
</table>

Iz priložene tablice može se vidjeti da se način i ciljevi promatranja za svako navedeno područje mijenja. Terensko analiziranje je korisno za brzo prikupljanje geografskih referentnih informacija. S vremenskog aspekta analiziranje podataka i njihovo prikupljanje trebalo bi početi što prije.
Pristupnost resursa kao što je specijalizirano osoblje i plovila, logistika i troškovi istraživanja također moraju biti uzeti u obzir. Brzina kojom će uzorci biti prikupljeni ovisi o vremenskim pogodnostima i pristupačnosti područja. Cijena promatranja bi trebala biti u odnosu na količinu uloženoga truda, učestalost, količinu uzoraka i područja s kojeg se isti prikupljuju, vrstu provedene analize. S obzirom na to da je cijena analize većinom definirana brojem obavljenih uzoraka najčešće se preporučuje obavljanje minimalnog broja analize uzoraka dok je ostatak uzoraka pohranjen u spremištima dok ne budu bili potrebni. Na sljedećoj tablici je prikazani su načini prikupljanja podataka nakon što se desio izljev.

Tablica 5. Statistički pristupi za prikupljanje podataka nakon izljeva

<table>
<thead>
<tr>
<th>Sampling design</th>
<th>Main characteristics in relation to post-spill monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judgemental sampling</td>
<td>Easy to implement, ‘common sense’ approach, especially good for fingerprinting and consensual, low effort monitoring programmes. An example of non-probability sampling, based on the judgement of the person sampling.</td>
</tr>
<tr>
<td>Simple random sampling</td>
<td>Samples are chosen entirely by random from a larger group. Statistically sound, easy to implement in homogenous areas (open waters, long and constant coastlines, fisheries); difficult in areas of varied coastline and varied contaminant levels.</td>
</tr>
<tr>
<td>Stratified random sampling</td>
<td>A ‘judgemental’ variation of simple random sampling where areas are broken up into case-relevant sub groups (or stratum) for random sampling. Good in heterogeneous areas (diverse in character) when sub-groups within an overall group vary.</td>
</tr>
<tr>
<td>Systematic (grid) sampling</td>
<td>Appropriate for large areas with little known variation, especially for vessel-based sampling where transects can be made. Statistically sound, where other variables may be systematically involved (e.g. other contaminant sources).</td>
</tr>
<tr>
<td>Cluster sampling</td>
<td>Efficient, multiple-phase approach that allows a second, more detailed study of hot-spot areas identified in first phase (often a grid design).</td>
</tr>
<tr>
<td>Composite sampling</td>
<td>Extremely efficient phased approach where large areas can be screened by combining samples for analysis. Not appropriate in areas of highly varied contamination.</td>
</tr>
</tbody>
</table>

Kako bi se održala visoka kvaliteta prikupljanja i analize uzoraka svako promatranje mora sadržavati garanciju i kontrolu kvalitete. Kontrolu kvalitete se može provoditi na različite načine:

- **Podijeljeni uzorci**
 Svaki uzorak je podijeljen nakon što je pribavljen. To daje opciju da se pribavljeni uzorci analiziraju od strane dvije ili više stručnih osoba.
- Dupliciranje
 Korištenje iste opreme i procedura na istoj lokaciji te uzimanje dva ili više uzoraka koji bi trebali biti identični. Takvi uzorci se koriste da bi se usporedila varijacija istih.
- Dupliciranje u laboratoriju
 Duplicirani uzorci koji su predani laboratoriju kao dva različita uzorka. Na ovaj način može se provjeriti preciznost laboratorija.

5. 1. SATELITSKO MOTRENJE

Sateliti se mogu koristiti u razne svrhe počevši od navigacije pa sve do vojnih operativnih pothvata. Motrenje uljnih mrlja je također jedna od opcija. Tehnologija daljinskog očitavanja pomoću raznih senzora i kamere na satelitima omogućava prikupljanje raznih podataka o svijetu s velike udaljenosti.

Prilikom izljeva, stručni kadar iz zraka pomoću helikoptera i aviona promatra situaciju. "Obraćaju pozornost na lokaciju, oblik, veličinu, boju. U slučaju velikog izljeva avione gubi smisao i prelazi se na satelitsko promatranje. Ono pruža zračni prikaz i obrub uljne površine. S obzirom na to da ulje može biti različite viskoznosti obrub ne mora biti naznaka završetka uljne mrlje.

Prioritet imaju područja koja su prekrivena najdebljim slojem ulja. "Na sljedećoj slici prikazan je primjer izljeva prilikom nesreće platforme (Engl. Deepwater horizon)."

11 Office of Response and Restoration "How do we use satellite dana during oil spills?"
https://response.restoration.noaa.gov/about/media/how-do-we-use-satellite-data-during-oil-spills.html
(31.07.2020)
Na slici se prikazuju tri nijanse plave boje koje prikazuju potencijalnu trajektoriju kretanja uljne mrlje. Dvije tamnije nijanse prikazuju položaj ulja dok najsvjetlija mogućnost daljnjeg širenja.

6. TEHNOLOGIJE UKLANJANJA ULJA S MORA

Ako dođe do izljeva proces kontrole i sanacije započinje njegovim nadzorom. Sakupljaju se podaci o izlivenom ulju i organizira se oprema i stručni kadar za rukovanje uljem. Nakon što je izljev lokaliziran uzimaju se u obzir vjetar i morske struje te se pomoću toga definira budući smjer gibanja ulja. Količina i svojstva ulja, geografski položaj, klimatska obilježja , oprema koja je na raspolaganju i stručno osoblje koje će njome upravljati određuju metodu pristupa . Cijeli proces se može razdijeliti u nekoliko faza:

1. Uklanjanje samog izvora onečišćenja,
2. Sprečavanje daljnjeg širenja onečišćenja,
3. Sanacija zahvaćenog površinskog sloja na moru,
4. Ako je onečišćenje došlo do obale potrebna je i njena sanacija,
5. Prikupljanje otpada i njegovo zbrinjavanje.

Ako je nezgoda uzrokovana tankerom prioritet će biti sprečavanje daljnog izlijevanja. Područje će se ograničiti i sanirati. Brod tj. mjesto curenja se mora zatvoriti, a preostali teret iz oštećenog tanka prebaciti u one netaknute. Brod se nakon toga iz tog područja udaljava tegljenjem. Ako su vremenski uvjeti prihvatljivi izvodi se procedura zadržavanja izljeva kako bi se spriječilo daljnje širenje i omogućilo lakše prikupljanje. Ulje se može uklanjati mehaničkom metodom ili nekim drugim metodama kao što su biorazgradnja, spaljivanje i slično. Kada se ulje prikupi ono se skladišti te se potom odvaja od vode (ako je to izvedivo). Tako dio ulja se može ponovno upotrijebiti. "Ako je situacija da je nastao izljev naftnih derivata (lako gorivo) onda se ne podilazi gore navedenoj proceduri. Razlog tome je njihovo svojstvo brze isparivosti." 12 Na sljedećoj slici prikazane su neke od metoda uklanjanja ulja iz mora.

Slika 7. Tehnike uklanjanja ulja iz mora
Izvor: Office of the auditor general of Canada "Responder needs to be familiar with the many techniques used to contain oil spills" https://www.oag-bvg.gc.ca/internet/English/parl_cesd_201012_01_e_34424.html (28. 07. 2020.)

12 Dr. Ian C. OBE "Oil spill response-experience, trends and challanges" 15.08.2000., Australia
6. 1. BRANE

Uporaba brana je vrlo jednostavna i zastupljena metoda u kontroli i nadzoru naftne mrlje. Rade na principu "ograde" kako bi spriječile daljnje širenje. Plutaju na površini i sastoje se od:

1. "Površinska platforma koja pluta na površini mora i sprječava ulje da prskanjem preskoči branu,
2. "Suknja" ili plasti koji se prostire vertikalno u dubinu,
3. Kabeli ili lanci koji međusobno spaja platforme i učvršćuje ih. Platforme se nadovezuju jedna na drugu dok se mrlja ne ogradi u potpunosti ili djelomičnu ako pogoduje vjetru ili struji iz drugog smjera,
4. Uzgona u formi zraka, pjene ili sličnih lakih materijala,
5. Balasta kako bi održava verticalni profil brane.

Mogu biti različitih veličina, materijala i oblika kako bi bile adekvatne za razne situacije. Od malenih, lakih i ekonomičnijih opcija sve do veličina koje iziskuju kontrolu dizalicama i tegljačima.

Slika 8. Vrste brana

Na prvoj slici je primjer čija nadvodna površina je punjena pjenom, a plasti koji je se pruža u dubinu je potpomognut balastom kako bi očuvao vertikalni profil i spriječio morske struje da podignu zavjesu. Na drugoj više plutajuća površina također punjena pjenom ali ovog

puta je spojena na samu zavjesu. Dno zavjese također ima balast ali je potpomognuto sidrom za bolje držanje.

![Slika 9. Vrste posebnih brana](image)

Gore navedene brane su nešto specifičnije na lijevoj strani je napuhujuća te je cijela napravljena od jednog dijela. Površinski plutajući dio ispunjen je zrakom, a balastni dio je ispunjen lancima. Brana na desnoj strani se koristi za obalno zatvaranje, gornja cijev se ispunjava zrakom, a druge dvije se ispunjavaju vodom. Time one služe za balast te omogućuju kvalitetno zadržavanje pogotovo u slučaju oseke.

Brane trebaju biti dovoljno fleksibilne kako bi se prilagodile gibanju valova, ali i dovoljno čvrste kako bi bile sposobne zadržati čim više ulja. Neke izvedenice brana loše prate gibanje vjetra što rezultira potapanje nadvodnog dijela ili podvlačenje podvodnog. Iako su brane konstruirane za rad u brzim tekućim vodama većina brana ne može izvršavati funkciju zadržavanja ulja pri brzinama većim od 1 čvora. U prosjeku zadržavaju do 0.7 čvorova uzevši u obzir duljinu plašta.
Počevši sa slikom s lijeve strane opisuje se propuštanje ulja uzrokovano jakim strujama dolazi do lomljenja uljnih čestica koje podilaze. Sljedeća slika opisuje slučaj propuštanja kod ulja niskog viskoziteta zahvaćeno površinskim jakim strujama. Na trećoj slici se opisuje situacija gdje se ulje veće gustoće taloži pri dnu plašta te kad dođe do kritične mase ulje počinje podilaziti pregradu.

Slika 10. Načini propuštanja ulja

U sljedeća tri slučaja dolazi do površinskog prelijevanja. Situacija na lijevoj slici je rezultat uzburkanog mora. Ulje prati gibanje mora te preskače pregradu. Na srednjoj slici se opisuje situacija gdje ulje doseže debeli površinski sloj te svojom masom stišće plutajući dio pregrade što rezultira prelijevanjem. Posljednja slika opisuje situaciju naviranja jake površinske struje koja svojom snagom podiže zavjesu i time dolazi do prolaska struje.

Cjelokupna brana je puna lakša za rukovanje ako je sastavljena od više malih dijelova jer ako dođe do kvara jednog dijela kao se zamjeni s drugim. Unatoč tome neki od propusta kraćih pregrada su narušavanje profila zavjese i zahtjeva više vremena da se pregrade međusobno povežu pošto ih ima više. Postoji više vrsta povezivanja, ali je i to problem jer u slučaju da su potrebne velike dužine međusobno povezivanje će biti otežano zbog različitih vrsti priveza. Strukturalna čvrstoća također je bitan aspekt kako bi se izdržala morska struja. Na sljedećoj tablici prikazane su različite vrste brana, njihov trošak, učinkovitost i preferirano mjesto primjene.

Tablica 5. Karakteristike različitih vrsti brana

<table>
<thead>
<tr>
<th>Tip brane</th>
<th>Metod flotacije</th>
<th>Korištene materijale</th>
<th>Složenost u vjetru</th>
<th>Povremena primjetnost</th>
<th>Pratljivost</th>
<th>Relativni trošak</th>
<th>Preferirano mjesto primjene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaslon</td>
<td>Sklopivi</td>
<td>Kompaktna</td>
<td>Dobro</td>
<td>Obostrano</td>
<td>Jednostavan</td>
<td>Visoki</td>
<td>Udom ili offshore</td>
</tr>
<tr>
<td>Zid</td>
<td>Vatrogasna</td>
<td>Vatrogasna</td>
<td>Dobro</td>
<td>Moore</td>
<td>Jednostavan</td>
<td>Srednje</td>
<td>Zaštićene vater na primjeru</td>
</tr>
<tr>
<td>Oklopno sačuvanje</td>
<td>Sklopivi spreg težna čambarja</td>
<td>Kompaktna</td>
<td>Dobro</td>
<td>Moore</td>
<td>Srednje</td>
<td>Visoki</td>
<td>Nadirale našačna cijev (bez preraživanja)</td>
</tr>
</tbody>
</table>

Samo postavljanje može biti težak i potencijalno opasna operacija. Loši vremenski uvjeti i uzbudano more stvaraju ograničenja prilikom rukovanja. Čak i pri mirnom moru plan postavljanja mora biti unaprijed smisljen i kontroliran kako bi se minimalizirao rizik potencijalnog oštećenja brane.

6.2. SKIMERI

Glavni cilj svake sanacije je prikupiti čim više ulja moguće. Prikupljanje je glavni aspekt skimera. Svi skimeri su napravljeni tako da imaju preferenciju prikupljanja ulja naspram vode, ali se dizajnom razlikuju s obzirom na područje upotrebe. Osnovni modeli imaju dodatke na konstrukciju koja im omogućuje plutanje na vodi. Kompleksniji imaju automatizirane sustave održavanja na vodi i zasebne tankove koji rade separaciju ulja i vode. Više je faktora prilikom odabira skimera od kojih je najvažniji određivanje viskoznost izlivenog ulja. Skimeri mijenjaju kretanje ili prikupljaju ulje putem bočnih otvora koji koriste pumpu za dovođenje ulja u spremnik. "Oleofilni sistem je mehanizam kroz koji se ulje uklanja s morske površine, a oslanja se na prijanjanje ulja na njegovu površinu ili usisni sistem."15

a) Oleofilni skimeri

![Slika 12. Primjer oleofilnog disk skimera](image)

Slika 12. Primjer oleofilnog disk skimera

Izvor: ITOPF, "Use of skimmers in oil pollution response", UK, 2012 p.3

15 ITOPF, "Use of skimmers in oil pollution response", UK, 2012
Na sljedećoj tablici prikazane su razne vrste skimera. Njihova brzina prikupljanja, vrsta ulja s kojom najbolje djeluju, učinkovitost s obzirom na stanje mora i izvor napajanja.

Tablica 6. Karakteristike skimera

<table>
<thead>
<tr>
<th>Skimmer</th>
<th>Recovery rate</th>
<th>Oils</th>
<th>Sea state</th>
<th>Debris</th>
<th>Ancillaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disc</td>
<td>Dependent on number and size of discs. Tests show grooved discs can be highly effective.</td>
<td>Most effective in medium viscosity oils.</td>
<td>In low waves and current can be highly selective with little entrained water. However, can be swamped in choppy waters.</td>
<td>Can be clogged by debrs.</td>
<td>Separate power pack, hydraulic and discharge hoses, pump and adequate storage required.</td>
</tr>
<tr>
<td>Rope mop</td>
<td>Dependent on number and velocity of ropes. Generally low throughput.</td>
<td>Most effective in medium oils although can be effective in heavy oil.</td>
<td>Very little or no entrained water. Can operate in choppy waters.</td>
<td>Able to tolerate significant debrs, ice and other obstructions.</td>
<td>Small units have built in power supply and storage. Larger units require separate ancillaries.</td>
</tr>
<tr>
<td>Drum</td>
<td>Dependent on number and size of drums. Tests show grooved drums are more effective.</td>
<td>Most effective in medium viscosity oils.</td>
<td>In low waves and current can be highly selective with little entrained water. However, can be swamped in choppy waters.</td>
<td>Can be clogged by debrs.</td>
<td>Separate power pack, hydraulic and discharge hoses, pump and adequate storage required.</td>
</tr>
<tr>
<td>Brush</td>
<td>Throughput dependent on number and velocity of brushes. Generally mid-range.</td>
<td>Different brush sizes for light, medium and heavy oils.</td>
<td>Relatively little free or entrained water collected. Some designs can operate in choppy waters, others would be swamped in waves.</td>
<td>Effective in small debrs but can be clogged by large debrs.</td>
<td>Separate power pack, hydraulic and discharge hoses, pump and adequate storage required.</td>
</tr>
<tr>
<td>Belt</td>
<td>Low to mid-range.</td>
<td>Most effective in medium to heavy oils.</td>
<td>Can be highly selective with little entrained water. Can operate in choppy waters.</td>
<td>Effective in small debrs but can be clogged by large debrs.</td>
<td>Can deliver oil directly to storage at the top of the belt. Ancillaries required to discharge from a vessel to shore.</td>
</tr>
<tr>
<td>Vacuum/suction</td>
<td>Dependent upon vacuum pump. Generally low to mid range</td>
<td>Most effective in light to medium oils.</td>
<td>Used in calm waters. Small waves will result in collection of excessive water. Addition of a weir more selective.</td>
<td>Can be clogged by debrs.</td>
<td>Vacuum trucks and trailers are generally self-contained with necessary power supply, pump and storage.</td>
</tr>
<tr>
<td>Weir</td>
<td>Dependent upon pump capacity, oil type etc. Can be significant.</td>
<td>Effective in light to heavy oils. Very heavy oils may not flow to the weir.</td>
<td>Can be highly selective in calm water with little entrained oil. Can be easily swamped with increase in entrained water.</td>
<td>Can be clogged by debrs although some pumps can cope with small debrs.</td>
<td>Separate power pack, hydraulic and discharge hoses, pump and storage. Some skimmers have built-in pumps.</td>
</tr>
<tr>
<td>Non-Oleophilic Belt</td>
<td>Low to medium.</td>
<td>Most effective in heavy oils.</td>
<td>Can be highly selective with little entrained water. Can operate in choppy waters.</td>
<td>Effective in small debrs. Clogged by large debrs.</td>
<td>As for oleophilic belt skimmer.</td>
</tr>
<tr>
<td>Drum</td>
<td>Mid range.</td>
<td>Effective with heavy oils.</td>
<td>Can be highly selective in calm water with little entrained oil. However, can be swamped in waves.</td>
<td>As for weir skimmer.</td>
<td>As for weir skimmer.</td>
</tr>
</tbody>
</table>

Izvor: ITOPF, "Use of skimmers in oil pollution response", UK, 2012 p. 3
b) Usisni skimeri

Dizajnom jednostavni i omogućuju prikupljanje ulja s površine pomoću pumpi ili zračnog usisnog sistema. Usisne cisterne koje kombiniraju elemente prikupljanja, skladištenja, transporta i separacije vode i ulja ili plutajući skimeri koji pomoću gravitacijske sile prikupljaju ulje u centralni tank.

c) Ostale vrste skimera

Osim navedenih vrsta neke su prilagođene te su bolje i stabilnije na valovima i uzburkanom moru. Stepeničasti skimeri funkcioniraju tako da je jedna strana uronjena u more te pokretna traka nadije ulje s površine mora i skladišta ga u tankove. Postoje i stepeničasti skimeri koji naguravaju ulje u vodu te prilikom uljnjeg uzgona ponovno ga pokupi.

Skimeri vrše postavljeni su na površini vode te gravitacija prikupljava površinski sloj ulja. Mehanički bubanj skimeri rade na principu rotacije lopatica poput turbine. Lopatice se rotiraju te svaka svojim izranjajem prikuplja jedan dio ulja.

Svaki sustav nije savršen pa tako i ovaj ima svojih mana. Ograničen je vremenskim prilikama, viskoznošću, struje i valovi. Širenje izljeva ograničava moguću količinu prikupljenog ulja. Mogućnost selektivnog odvajanja ulja je također problem ako su zapremni kapaciteti ograničeni.

Kriterij izvođenja se određuje po količini prikupljenog ulja u odnosu sve ukupne prikupljene količine vode i ulja. Također postoji i parametar brzine prikupljanja. On prikazuje količinu prikupljenog ulja po jedinici vremena (m³/h). Produkt prikupljanja u jedinici vremena je zapravo zbir vremena uočavanja izljeva i efikasnosti cijelog sistema da izdrži nametnutu brzinu i količinu prikupljanja16 (Pumpe i zapremni prostori). Kapacitet pumpe se određuje kombinacijom njezinog kapaciteta, brzini prikupljanja i efikasnosti prikupljanja.

16: ITOPF, "Use of skimmers in oil pollution response", UK, 2012 op.cit. p. 8
6. 3. MATERIJALI ZA UPIJANJE ULJA

Uljni upijači su proizvodi namijenjeni prikupljanju ulja u preferenciji naspram mora. Postoje razne izvedenice kao što su organske i sintetičke. Unatoč širokoj namjeni koriste se s oprezom pošto prekomjernim korištenjem mogu stvoriti sekundarne probleme kao što su kontaminacija, skladištenje i odlaganje.

Svi navedeni sekundarni problemi nadodaju trošak operacija generalnog čišćenja. Najviše su efektivni prilikom zadnjih faza čišćenja obale ili malih izljeva koje je teško prikupiti ostalim sredstvima.

"Da bi materijal upijao ulje treba biti oleofilan i hidrofoban. Većinom funcioniraju tako da pripijaju ulje na svoju površinu ili ga upija u materijal. Tekućine se upijaju na način sličan kapilarnosti što uzrokuje naticanje materijala i kombinacija s istim tako da više ne curi pasivno ili pod pritiskom natrag u more."17 Napravljeni su od polimera s velikom površinom za brzu apsorpciju. U teoriji upijači mogu prikupljati lako i teško ulje, vrijeme potrebno za njihovo upijanje je duže od praktičnog .

Kapilarnost ovisi o relativnosti površinske napetost tekućine te viskoznosti ulja. Kapilarna reakcija je bitna za upijače na bazi pjene. Pjena s malim porama dobro upija ulja niskog viskoziteta ali se brzo začepi uljima veće gustoće.

Široka paleta materijala može se koristiti kao sredstvo za upijanje. Organski su kora, treset, piljevina, pluto, perje, slama, pamuk i ljudska kosa te sintetički kao što je polipropilen. Sintetički spojevi su naj učinkovitiji.

17 ITOPF, "Use of sorbent materials in oil spill response", UK, 2012
U sljedećoj tablici prikazane su različite vrste upijača, njihov sastav, prednosti koja svaka vrsta sa sobom donosi i ograničavajući faktori.

Tablica 7. Prednosti i mane pojedinih vrsti upijača

<table>
<thead>
<tr>
<th>Material</th>
<th>Benefits</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk</td>
<td>• Organic – including bark, peat, sawdust, paper-pulp, cork, chicken feathers, straw, wool and human hair.</td>
<td>• Difficult to control, can be spread by the wind</td>
</tr>
<tr>
<td></td>
<td>• Inorganic – vermiculite and pumice</td>
<td>• Difficult to retrieve</td>
</tr>
<tr>
<td></td>
<td>• Synthetic – primarily polypropylene</td>
<td>• Oil and sorbent mixture can be difficult to pump</td>
</tr>
<tr>
<td></td>
<td>• Often naturally abundant or widely available as waste by-product of industrial processes</td>
<td>• Disposal of oil sorbent mixture more limited than oil alone</td>
</tr>
<tr>
<td></td>
<td>• Can be low cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Can serve to protect wildlife at haul-out sites</td>
<td></td>
</tr>
<tr>
<td>Enclosed</td>
<td>All of the above bulk materials can be enclosed in mesh or nets</td>
<td>• Structural strength limited to that of the mesh or net</td>
</tr>
<tr>
<td></td>
<td>• More straightforward to deploy and retrieve than loose sorbent</td>
<td>• Organic booms can rapidly become saturated and sink. Oil retention is limited</td>
</tr>
<tr>
<td></td>
<td>• Enclosed boom has a greater surface area than continuous boom</td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>Synthetic – primarily polypropylene</td>
<td>• Limited efficiency for weathered or more viscous oils</td>
</tr>
<tr>
<td></td>
<td>• Long-term storage</td>
<td>• Do not readily decompose limiting disposal options</td>
</tr>
<tr>
<td></td>
<td>• Relatively straightforward to deploy and retrieve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High oil recovery ratio possible if used to full capacity</td>
<td></td>
</tr>
<tr>
<td>Fibre</td>
<td>Synthetic – primarily polypropylene</td>
<td>• Less effective on fresh light and medium oils</td>
</tr>
<tr>
<td></td>
<td>• Effective on weathered and more viscous oils</td>
<td></td>
</tr>
</tbody>
</table>

6.4. IN-SITU PALJENJE

Proces paljenja plutajućeg ulja na moru u blizini izljeva. Kako bi proces funkcionirao, mora postojati zadovoljavajuća koncentracija ulja i izvor paljenja se mora primijeniti. Ako je sprovedeno kako treba mogu se ukloniti velike količine izlivenog ulja. Složenost problematike započinje u određivanju situacije tj. da li je situacija adekvatna za paljenje ili nije. Požar i toksični plinovi imaju mogućnosti utjecaja na ljudsko zdravlje stoga je ovaj način puno prihvatljiviji na većoj udaljenosti od obale ili područja koja nisu naseljena. Još jedna problematika je da paljenjem se ispušta velika količina čađe u atmosferu te pogođuje većim temperaturama i ubrzanom topljenju ledenjaka. Bitno je da se odluči na paljenje u prihvatljivom vremenskom intervalu jer laki plinovi isparavaju, a može doći i do emulzije. Oba spomenuta problema otežavaju gorenje i zato je potrebna brza reakcija. "Za efikasno paljenje sloj ulja na površini mora bi trebao biti bar 3 mm kako bi spriječio efekt hlađenja mora i vjetra."\(^{19}\) Paljenje se može provesti raznim napravama počevši od jednostavnih kao što je ručnik namočen benzinom do nešto sofisticiranih baklji smještenih u podnožju helikoptera. Nakon što mrlja dosegne zadovoljavajuću temperaturu ona počinje i zadržava gorenje. Kako se mrlja širi nakon određenog vremena more i vjetar će ugasiti vatru.

\(^{19}\) ITOPF, "In-Situ burning", https://www.itopf.org/knowledge-resources/documents-guides/response-techniques/in-situ-burning/ (29. 07. 2020.)
Nakon paljenja preostale čestice ulja mogu potonuti i biti toksične za morski svijet tako da se i to mora uzeti u obzir prilikom donošenja odluke o paljenju.

Slika 13. Paljenje ulja na površini mora

Izvor: NPR "Researchers test hotter, faster and cleaner way to fight oil spills"

6. 5. DISPERZANTI

Ulje na morskoj površini se zadržava neko vrijeme. Sukladno vrsti ulja neka se mogu disperzirati u vodi. Ulja niske razine viskoziteta podliježu većoj šansi da se prirodno disperziraju." Prirodna disperzija je rezultat miješanja energije nastale od strane vjetra i valova koja je dostatna da se nadjača površinska napetost ulja i vode te da se ulje razbije na kapljice raznih veličina. Što su kapljice veće to će brže izroniti na površinu i ponovno se formirati u uljnu mrlju. Manje kapljice ostat će ispod vode na određenoj visini vodenog lanca te će biti dodatno usitnjene od strane morskih struja."20 Prirodna disperzija odvija se u uzburkanim morima.

Disperzanti su napravljeni da potpomognu prirodnu disperziju smanjivanjem površinsku napetost između ulja i mora. Time olakšavaju valovima razbijanje ulja na još više sitnijih čestica. Disperzanti su zapravo otapala i ima dvije funkcije. Prva je da stanjuje sloj ulja, a to radi tako da smanjuje viskoznost i potpomaže prodiranju otapala u ulje. Disperzanti u sebi sadrže molekule koje su oleofilne i hidrofilne. Nakon nanošenja na ulje oleofilne

20 ITOPF, "Use of dispersants to treat oil spills", UK, 2012.
čestice se vezuju na uljne čestice, a hidrofilne na vodene čestice. Tako se smanjuje površinska napetost i omogućuje da se ulje razbije na male kapljice koje će ostati u vodi i biti dalje razrĳđene. Brzina kojom kapljice ponovno naviru na površinu ovisi morskim strujama. Zadržavanjem disperzanta na površini mora i činjenicom da su uljne kapljice već dovoljno sitne sprječava se ponovno formiranje uljne mrlje.

Do bio degradacije od strane morskih mikro organizama može doći na površini kapljice jer se mikro organizmi nalaze u moru, a ne u ulju. Što su kapljice ulja sitnije i više disperzirane to je veća mogućnost nastupa bio degradacije. Disperzanti su klasificirani po generacijama i vrsti. Prva generacija se pojavila 1960. i bili su slični industrijskim sredstvima no zbog svoje iznimne štetnosti na okoliš maknuti su iz namjene. Sljedeća generacija je nazvana "Tip I. disperzanti" i dizajnirana je da tretira uljne mrlje na moru s broda. Iako nisu otrovni kao početna generacija zbog svoje slabe učinkovitosti i ova vrste je počela biti zabranjena u nekim zemljama i područjima. Treća generacija disperzanata sadrži glikol i otopine lakih destilata petroleja. Ovu klasu se može podijeliti na "Tip II" i "Tip III". Obje klase su koncentrati, ali je "Tip II" prije upotrebe pomiješan s morskom vodom. Potreba za razrjeđivanjem ograničava ovu vrstu na upotrebu samo s brodova. "Tip III" disperzanti se napravljeni da se mogu koristiti i aplicirati s aviona, ali i brodova. Na sljedećoj slici je prikazan princip funkcioniranja disperzanta.

Slika 14. Proces kemijske disperzije
Učinkovitost disperzanta je ograničena fizičkim i kemijskim parametrom. Stanje mora i svojstvo ulja su dva bitna aspekta. Potrebna je minimalna energija mora za uspješnu disperzaciju ulja na moru." Ako je ta energija ispod tog minimuma disperzirane kapljice mogu ponovno isplivati na površinu i formirati uljnu mrlju. U suprotnoj situaciji gdje energija valova prevelika može se desiti da se poništi utjecaj disperzanata pošto onemogućuje direktan kontakt s uljem. "21 Karakteristike ulja i način na koji se te karakteristike mijenjaju kroz proces širenja ulja na moru su bitne prilikom procjene korištenja disperzanta. Što je uljna viskoznost veća učinkovitost disperzanta pada. Osim visoke viskoznosti teže i isparavaju.

Nanošenje disperzanata može biti pomoću brodova ili aviona. Prilikom prskanja bitno je da kapljice disperzanta budu dovoljno raspršene i nanošene pod odgovarajućim kutom kako ne bi probilo površinski sloj ulja. Također kapljice moraju biti dovoljne veličine kako bi savladale vjetar i isparavanje. S brodova se disperzanti nanose putem sprinklera koji su smješteni na metalnoj konstrukciji. Mehaničke pumpe pumpaju disperzant iz tanka do sprinklera. Na sljedećoj slici je primjer fiksiranog sustava sprinklera koji se nanosi s broda.

\[\text{Slika 15. Fiksni sustav sprinklera na brodu}\]

Izvor: ITOPF, "Use of dispersants to treat oil spills", UK, 2012., OP. Cit. P. 6

\[21\text{ ITOPF, "Use of dispersants to treat oil spills", UK, 2012., OP. Cit. P. 4.}\]
Idealna vrsta aviona za ovakav pothvat se određuje na temelju lokacije i veličini izljeva uzevši u obzir lokalnu raspoloživost. Na sljedećoj slici je primjer nanošenja disperzanta putem aviona.

Slika 16. Nanošenje disperzanta putem aviona

Izvor: ITOPF, "Use of dispersants to treat oil spills", UK, 2012. , OP. Cit. P. 6

6.6. BIOREMEDIJACIJA

Ovaj način saniranja uljnog izljeva smatra se najodrživijim. Unatoč tome pun potencijal ove tehnike nije još dosegnut. Proces se svodi na razgradnju ulja pomoću mikroorganizama koji se hrane ugljikovodicima. Bakterije mogu taj proces odraditi prirodnim putem no ako je omjer izlivenog ulja veći od bakterija sam proces neće biti učinkovit. Osim omjera važno je obratiti na pozornost na udio dušika i fosfora.

Ova metoda se može i pokazala se najdjelotvornija u brodskim tankovima, ali se može primijeniti i na obalnom području. Mikroorganizmi se uzgajaju u posebnim laboratorijskim uvjetima. Više je faktora kako bi ova metoda bila djelotvorna, a to su temperatura, površina koju mikroorganizmi dodiruju, hranjive tvari i vlaga. Strategija involvira opskrbljivanje dušikom i fosforom područja ugljikovodika kako bi se stimulirali mikroorganizmi koji razgrađuju ulje. "Ugljikovodični metabolizam je ograničen dostupnošću hranjivih tvari, stoga opskrbljivanjem potrebnih nutrijenata mikro degradacija bi trebala biti u porastu. Nutrijenti mogu biti organskog i anorganskog podrijetla kao npr. gnojivo ili natrijev nitrat." Na sljedećoj slici je primjer bakterije alcanivorax borkumensis razgrađuje ulje.

Slika 17. Bakterija Alcanivorax borkumensis
Izvor: Microbe wiki, Alcanivorax borkumensis
https://microbewiki.kenyon.edu/index.php/Alcanivorax_borkumensis (29.07.2020)

"Iako se malo zna o točnom mehanizmu koji A. borkumensis koristi za biorazgradnju nafte, hipoteza sažima ovu metodu sljedećim koracima 1.) istjecanje nafte u vodu uzrokuje porast koncentracije fosfora i dušika 2.) povećana dostupnost hranjivih sastojaka uzrokuje da se A.borkumensis metabolizira i raste brže; populacija se povećava 3.) A.borkumensis se veže i formira biofilm oko kapljice ulja. Biofilm pomaže u regrutiranju dodatnih bakterija na mjestu zagađenja 4.) Enzimi AlkB1 i AlkB2 sintetizirani su i koriste se za oksidaciju C-alkana, čime kataliziraju razgradnju nafte 5.) Proizvedeni biosurfaktant razbija uljne emulzije ulja i vode da bi ulje postalo dostupnije za A.borkumensis"\(^{23}\)

6. 7. OBALNO ČIŠĆENJE

Kao i kod svake od prijašnje navedenih metoda i obalno čišćenje zahtjeva brzu odluku i određivanje tipa onečišćenja, tipa obale i dostupnosti iste. Operacija čišćenja se najčešće dijeli u tri faze.

1. Faza hitnoće- Prikupljanje plutajućeg ulja u blizini obale,
2. Faza projekta- Uklanjanje ulja i zagađenog materijala s obale,
3. Faza poliranja- Posljednje čišćenje preostalog onečišćenja.

\(^{23}\) Microbe wiki, Alcanivorax borkumensis " https://microbewiki.kenyon.edu/index.php/Alcanivorax_borkumensis" (29.07.2020)
Prilikom prve faze svi resursi se prebacuju na mjesto izljeva što je brže moguće kako bi se spriječila potencijalno veća šteta na okoliš. U ovoj fazi se započinje korištenja svih pribavljenih materijala. Druga faza je zapravo jedna od komponenti sve ukupne operacije sanacije okoliša i ne treba se gledati zasebno. U svakoj situaciji prioritet je prikupljanje plutajućeg ulja koje je upućeno prema obali. Također ako ima već nataloženog ulja na obali, isto se ograđuje branama kako bi se spriječilo ponovno zagadenje mora nakon sljedeće plime. Ovo pravilo se ne primjenjuje ako je obala osjetljiva, tada je u interesu da ulje migrira na neko drugo područje.

6. 8. TEHNIKE ČIŠĆENJA OBALE

Uklanjanje rasutog ulja i tretiranje zaumljene obale može se izvesti pomoću pumpi, vakuumskih kamiona i prethodno objašnjenih skimera. "Ulje na obali može biti prikupljeno putem pumpi s kamiona. Njihova učinkovitost varira o vrsti i količini ulja. Dnevna rata prikupljanja je u prosjeku 20 m³. Efikasnost prikupljanja raste postavljanjem skimera na usisnoj cijevi i ograđivanjem ulja branama."24

a) Mehaničko prikupljanje

Ulja visoke viskoznosti, guste emulzije mogu biti odvojene od morske površine kantama ili lopatama. Potrebna je spretnost u izvođenju ovakve radnje kako bi se prilikom prikupljanja ulja spriječilo i prikupljanje morske vode. Također mora se paziti s rukovanjem mašinerija i opreme kako ne bi došlo do dodatnog onečišćenja obale. Bageri su vrlo efikasni ako je obala pristupačna. Pomoću njega se može zahvatiti nešto malo više ispod površine ulja i zahvatiti već kontaminiran dio pijeska. Bageri generiraju približno 400-800 m³ otpadnog materijala dnevno. Od toga 75% prikupljenog materijala je obični pijesak u ovom slučaju. Kad se uzme u obzir da se tih 75% čistog pijeska pomiješa s uljem dobiju se još veće nepotrebne količine onečišćenog otpada. Na sljedećoj slici je prikazan primjer prikupljanja ulja s obalne površine pomoću bagera.

b) Ručno prikupljanje

Korištenje ljudskog rada za prikupljanje ulja i teško kontaminirane obale je prihvatljiv način za svaku situaciju, ali najviše na obala koje su posebno osjetljive. Ručnim radom dobiva se na selektivnosti te prilikom rukovanja osjetljivim područjima može se očuvati okoliš i efikasno prikupiti ulje. "Ulje se prikuplja grabljama ili lopatama koje na sebi imaju rupe kako bi odvajale vodu od ulja i skladištite ga u odgovarajuće spremnike. Ako je ulje pomiješano s pijeskom može se odmah istovariti u plastične vreće kapaciteta 10-15 kg."\(^\text{25}\) Vreće je potrebno udaljiti od obale i sunca kako bi se spriječilo njihovo raspadanje. Na sljedećoj slici je prikazan primjer prikupljanja ulja s obalne površine pomoću grablji.

c) Ispiranje

Ispiranje je metoda u kojoj se koristi niskotlačna voda kako bi se uklonilo nataloženo ili ukopano ulje s obala. Najčešće su to slučajevi gdje se uklanja ulje zadržano u sedimentu ili uklanjanje s osjetljivih obala. Morska voda se usisava pomoću prijenosnih pumpi koje se umeću u zemlju te agitacijom ulje navire na površinu. U nekim područjima gdje je vrijeme mirno primjenjuje se naplavljivanje. Ulje se podiže s obale i nakon toga prikuplja s površine. "Surf" pranje koristi prirodne procese čišćenja, a primjenjuje se kod pješčanih obala. Energija vala razbija ulje na obali i disperzira ga kroz vodenu razinu. Pranje pod visokom pritiskom može se koristiti na većini tvrdih površina ili ako se utvrdi da je prirodno ispiranje ne učinkovito. Može se koristiti topla i hladna voda ovisno o vrsti raspoložive opreme. Visokotlačno pranje je vrlo agresivno i oštećuje kamene površine te žive organizme koji živa na tim površinama. Voda koja se koristi za čišćenje može biti akumulirana putem upijača postavljenih na rubovima mrlje.

Slika 20. Pranje uljnih površina visokotlačnim sustavom

7. PROPISI ZA SPREČAVANJE ONEČIŠĆENJA MORA ULJIMA

Kako bi se spriječile ovakve vrste onečišćenja i zaobišlo primjenjivanje neke od gore navedenih metoda Međunarodna pomorska organizacija (engl. International Maritime Organization- IMO) pomaže pri provođenju međunarodnih ugovora kojima se regulirala transportna pomorska industrija i općenito smanjuje rizik od onečišćenja okoliša.
Ovo je osnovna internacionalna konvencija čija je svrha prevencija zagađenja morskog okoliša od strane brodova prilikom operacijskih normi ili slučajnim slijedom događaja.

Konvencija sadrži regulacije kojima je cilj prevencija sprečavanje i umanjivanje zagađenja s brodova. "Razvrstana je u 6 dijelova.

- Annex 1: Regulacije za prevenciju zagađenja uljima

- Annex 2: Regulacija za prevenciju onečišćenja mora opasnim tekućim teretima u rasutom stanju
 Definira se iskrcajni kriterij i mjere kontrole za onečišćenje od strane opasnih tekućih tereta. Više od 250 vrsti tereta je stažljeno na listu koja zahtjeva poseban iskrcaj u adekvatne spremnike. Zabranjeno je ispuštanje bilo kakvih štetnih tvari unutar 12 NM od najbliže obale.

- Annex 3: Prevencija zagađenja okoliša opasnim teretom u pakiranom stanju
 Sadrži prohtjeve i standarde za pakiranje, označavanje, dokumentiranje, skladištenje i ograničenje količine opasnog tereta koji se u tom slučaju prevozi. Štetne tvari su one koje imaju utjecaj na morsko okruženje.

- Annex 4: Prevencija zagađenja otpadnim vodama
 Sadrži zahtjeve za kontrolu onečišćenja od strane otpadnih voda, ispuštanje otpadne vode je dozvoljeno, ali moraju biti tretirane od strane odobrenog sustava za dezinficiranje. Također otpadne vode se smiju ispuštati na udaljenosti minimalno 3 NM od najbliže obale, ako nisu tretirane tada je udaljenost 12 NM od najbliže obale.
• Annex 5: Prevencija zagađenja mora otpadom s broda
 Odnosi se na razne vrste otpada njihovu propisanu veličinu i udaljenost s koje smiju biti ispuštene.
• Annex 6: Prevencija zagađenja zraka s brodova
 Određuje dopuštenu razinu ispušnih plinova u atmosferu."

7. 2. MEĐUNARODNA KONVENCIJA O GRADANSKOJ ODGOVORNOSTI ZA ŠTETU OD ONEČIŠĆENJA NAFTOM

Ova konvencija je uvedena kako bi osigurala adekvatnu kompenzaciju strani koja je pretrpjela uljno onečišćenje koje je ishod pomorske nesreće. Definira odgovornost za takvu štetu i stavljaju na vlasnika broda koji je uzrokovao onečišćenje. "Brod mora biti pokriven osiguranjem koji omogućuje financijsku sigurnost u razini vlasnikove odgovornosti za jedan incident. Odnosi se na sve brodove koji prevoze ulje u rasutom stanju kao teret, ali su samo brodovi koji prevoze više od 2000 tona obavezni imati osiguranje s obzirom na mogućnost uljnog onečišćenja. Konvencija pokriva štetu od onečišćenja koja je posljedica izlijevanja ulja pretrpljenih na teritoriju (uključujući teritorijalno more) države potpisnice ove konvencije".

27 IMO, International Convention on Civil Liability for Oil Pollution Damage (CLC), http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-on-Civil-Liability-for-Oil-Pollution-Damage-(CLC).aspx#:~:text=The%20Civil%20Liability%20Convention%20was,casualties%20involving%20oil%20carrying%20ships.&text=The%20only%20exception%20as%20regards,not%20required%20to%20carry%20insurance. (30.07.2020)
7. 3. MEĐUNARODNA KONVENCIJA O SPREČAVANJU ONEČIŠĆENJA MORA ULJIMA - OILPOL (LONDON, 1954.)

Prvi tankeri su se pojavili pred kraj 19. st. Potencijal za mogućnost onečišćenja od strane istih je bio prepoznat upravo od strane međunarodne konvencije Oilpol. Većinu zagađenja koju je u to vrijeme ova vrsta brodova radila je bila rezultat osnovnih rutinskih operacija na brodu kao što je čišćenje tankova. Prije ove konvencije tankovi su se ispirali vodom te se ista ta zauljena voda ispuštala natrag u more. Oilpol je zabranio ispuštanje zauljenih voda u posebnim područjima i pri dovoljnoj udaljenosti od najbližeg kopna.

8. ZAKLJUČAK

Također potrebna je kolektivna svijest. Pomorstvo je teško zanimanje i sve je više ljudi koji ga rade iz financijskih razloga. Vjerujem da još uvijek postoje ljudi koji ovo zanimanje rade iz ljubavi prema moru te ako razmišljaju da je osim prijevoza crnog zlata od točke A do točke B bitno i more, onda će i izvedba plovidbe sigurno biti na visokom nivou. Svijet nam je dao gomilu resursa i nadam se da će jednog dana nafta kao izvor energije otići u povijest.
LITERATURA

1. Irena B. Ivshina 2015, "Environmental Science: Processes & Impacts", Institute of Ecology and Genetics of Microorganisms Issue 7, Abstract

2. TIP 02, 2011. , "Fate of marine oil spills" , ITOPF, UK.

5. Tim Wadsworth, ITOPF., "Comparison and assessment of waste generated during oil spills", p.1651

6. ITOPF, "Effects of oil pollution on the marine environment", UK p. 3

7. ITOPF, "Effects of oil pollution on the marine environment", UK p.4

10. Dr. Ian C. OBE "Oil spill response-experience, trends and challanges" 15.08.2000., Australia

24. IMO, International Convention on Civil Liability for Oil Pollution Damage (CLC), http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-on-Civil-Liability-for-Oil-Pollution-Damage-(CLC).aspx#:~:text=The%20Civil%20Liability%20Convention%20was,casualties%20involving%20oil%2Dcarrying%20ships.&text=The%20only%20exception%20as%20regards,not%20required%20to%20carry%20insurance. (30.07.2020)
POPIS SLIKA

1. Tablica 1. Fizičke karakteristike 4 specifične vrste sirove nafte
2. Grafikon 1. Odnos viskoznosti / temperature 4 vrste sirove nafte
3. Slika 1. Procesi vremenskih utjecaja koji utječu na izlijevanje
4. Slika 2. Proces evaporacije
5. Slika 3. Nastala emulzija nakon havarije broda "Exxon Valdeza"
6. Tablica 2. Usporedba havarija i količina izlivene nafte
7. Grafikon 2. Ukupna količina sakupljenog onečišćenja kroz 18 nezgoda
8. Grafikon 3. Odnos izlivene količine nafte i sakupljene količine otpada
9. Slika 4. Utjecaj različitih vrsta goriva u intervalu od toksičnosti do zagušivanja
10. Tablica 3. Period potreban za obnovu pojedinog staništa
11. Slika 5. Utjecaj ulja na mangrovu šumu
12. Tablica 4. Promatranje, ciljevi i aktivnosti u procesu pribavljanja potrebnih podataka
13. Tablica 5. Statistički pristupi za prikupljanje podataka nakon izljeva
14. Slika Zapažanje i predikcija daljnog širenja putem satelita
15. Slika 6. Tehnike uklanjanja ulja iz mora
17. Slika 8. Vrste posebnih brana
20. Tablica 5. Karakteristike različitih vrsti brana
22. Slika 12. Primjer upijača
23. Tablica 7. Prednosti i manje pojedinih vrsti upijača
24. Slika 13. Paljenje ulja na površini mora
26. Slika 15. Fiksni sustav sprinklera na brodu
27. Slika 16. Nanošenje disperzanta putem aviona
28. Slika 17. Bakterija Alcanivorax borkumensis
29. Slika 18. Proces prikupljanja ulja s obale pomoću bagera
30. Tablica 6. Karakteristike skimera
31. Slika 19. Ručno prikupljanje ulja pomoću grablji
32. Slika 20. Pranje uljnih površina visokotlačnim sustavom