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ABSTRACT

The validity of the gas turbine unit model largely depends on the accuracy of the flue gas temperature 
value calculation at the gas turbine inlet (TIT). This temperature is determined by the maximum 
combustion temperature. In variable running mode, the temperature value is regulated by changing 
the ratio of air and fuel at the inlet to the combustion chamber. The paper presents a model of a 
gas turbine combustion chamber using Modelica, an object-oriented language for modeling complex 
physical systems with the aim of determining the temperature of combustion flue gases, specific heat 
capacity, enthalpy, and flue gas composition at different gas turbine loads.

1 Introduction
The combustion chamber is an important link in the 

modeling of a gas turbine unit. The exhaust gas values 
from the gas turbine and their magnitude outlet from the 
combustion chamber affects the accuracy of the calcula-
tion of the entire gas turbine model. In cases of modeling 
a heat turbine due to the complexity of the combustion 
temperature calculation, it is often assumed that the flue 
gas temperature at the outlet of the combustion chamber 
is an isotherm which is not the case in reality and leads 
to inaccurate values in the calculation. As efficiency of 
the entire gas turbine process depends largely on the 
combustion process in the combustion chamber, many 
researches were conducted in that direction. Railckas et 
al., [1] carried out CFD simulations to see the operation 
of a gas turbine combustion chamber with the STAR-
CCM software where they compared simulation results 
with the operating parameters of the actual process. 
Comparison results are in the congruence with the actual 
running gas turbine. The transient combustion models 
were simulated by Large Eddy Simulations (LES) data, 
[2]. Combustion model in that study descripts turbulent 

premixed combustion, which is encountered at the injec-
tor exit of gas turbines combustor, by using the Coherent 
Flame Model (CFM) formalism, where tried to increase 
the range of validity of this 0D combustion model to a 
high number of aero engine combustor geometries, but 
without satisfactory results in the turbulence and the 
vortex definition. The turbulence models were modelled 
successfully by a URANS formulation in [3], using the SST 
turbulence model, as the basic modelling approach. The 
numerical results obtained by different turbulence models 
are comparable with the overall performance and have a 
fair overall agreement with the experimental data, what 
is their validation. The combustion chambers are compo- validation. The combustion chambers are compo-validation. The combustion chambers are compo-
nents which produce the highest destruction rate in open 
cycle gas turbines [4, 5]. The similar conclusion can be 
found in [6] for closed cycle gas turbines where the high-
est destruction rate occurs in main heater (or more of 
them). All of the combustion (or heat exchange) processes 
in gas or steam turbines can be improved and optimized 
by using various machine learning methods [7-10]. The 
advantage of these approaches is in very low relative error 
in comparison with the available data.

https://doi.org/10.31217/p.35.1.4
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For the purpose of calculating the combustion temper-
ature, it is necessary to use thermodynamic data which are 
described by interpolation curves of specific heat capacity 
and enthalpy which are known in the literature [11-13] 
and are often used for modeling purposes. These func-
tions describe the properties of combustion participants 
with sufficient accuracy. As the range of interpolated val-
ues covers the temperature ranges of 300-1000 and 1000-
5000 K these interpolations show large deviations in the 
calculation of the flue gas temperature in the combustion 
chamber of the gas turbine, which can be up to 100 K. The 
reason for this phenomenon lies in the fact that the tem-
perature range of combustion chambers are in the interval 
of 900-1250 K which just falls between these two inter-
vals. To address this problem they were made on the basis 
of data [14] new interpolation curves (Table 1 and Table 
2) with a higher degree of accuracy and based on them a 
combustion chamber model was made which in the itera-
tive procedure calculates the combustion temperature flue 
gas composition, specific heat capacity, average flue gas 
heat capacity and enthalpy of the exhaust gases. 

2 The combustion participants thermodynamic 
properties 

Gases that occur in the process of complete combus-
tion are CO2, H20 (g), N2, O2 which values are coefficients 
for calculating the heat capacity and enthalpy of gases 
given in Tables 1 and 2. The enthalpy of combustion gases 
(flue gases) is calculated by expression:

 

0

( )
T

p
T

= ∫h T c dT
 

(1)

where heat capacities in the Table 1 are calculated by:

 
1 2( )pc T a a T= +  (2)

where heat enthalpy in the Table 2 are calculated by:

 2
1 2 3( ) = + +h T a a T a T   (3)

Table 1 Combustion gases heat capacity coefficients

220-800 K 800-1500 K 1500-2500 K
CO2 a1 0,02913557 4,45264E-02 0,052758903

 a2 2,99640E-05 9,70935E-06 3,70306E-06
H20(g) a1 3,03695E-02 2,90995E-02 3,72788E-02

 a2 9,93150E-06 1,21192E-05 6,83606E-06
N2 a1 2,76147E-02 2,77732E-02 3,24244E-02
 a2 4,23709E-06 4,90748E-06 1,75613E-06

O2 a1 2,65373E-02 3,08985E-02 3,30255E-02
 a2 9,17537E-06 3,93738E-06 2,37424E-06

Source: Authors

Table 2 Combustion gases enthalpy coefficients

220-800 K 800-1500 K 1500-2500 K

CO2
 

a1 -6,35634E-01 -6,35634E-01 -1,21288E+01
a2 2,91356E-02 4,45264E-02 5,27589E-02

a3 1,49820E-05 4,85467E-06 1,85153E-06

H20(g)

a1 4,02478E-01 7,31029E-01 -5,64619E+00
a2 3,03695E-02 2,90995E-02 3,72788E-02

a3 4,96575E-06 6,05960E-06 3,72788E-02

N2
 

a1 2,42385E-01 -9,06821E-02 -3,55367E+00
a2 2,76147E-02 2,77732E-02 3,24244E-02

a3 2,11854E-06 2,45374E-06 8,78063E-07

O2
 

a1 3,57855E-01 -1,47096E+00 -2,92248E+00
a2 2,65373E-02 3,08985E-02 3,30255E-02

a3 4,58768E-06 1,96869E-06 1,18712E-06

Source: Authors
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3 The control volume of the combustion 
chamber

As the adiabatic combustion temperature can be 
over 2200 K [15] on the example of Methane, CH4 Φ = 1 
is Tadiabatic = 2267.2 K [16]. Such high amounts of tem-
perature at the outlet of the combustion chamber would 
cause damage to the gas turbine blades especially on 
gas models turbines of lower power (up to 5 MW) which 
do not have blade cooling implemented. The solution to 
this the problem can be obtained by bringing 3 to 6 time 
larger amount of air than required by stoichiometric cal-
culation [17], in order to maintain the inlet temperature 
of the gas turbine (TIT) as high enough as to allow opti-
mally turbine power at which the turbine blades will not 
be destroyed.

Adiabatic combustion temperature Tadiabatic the maxi-
mum flue gas temperature inside combustion chambers 
[18].

3.1 Adiabatic temperature calculation, Tadiabatic

By applying the first law of thermodynamics to the 
control volume of the combustion chamber it may be writ-
ten [19]:

 ( ) ( )o o o o
P R i � i i � i

P R
Q W H H N h h h N h h h− = − = + − − + −∑ ∑

 ( ) ( )o o o o
P R i � i i � i

P R
Q W H H N h h h N h h h− = − = + − − + −∑ ∑

 

(4)

where enthalpy of product and reactants of combustion is:

h(T) = hf
o(To) + h(T) – ho(To) (5)

The enthalpy of formation hf
o for the standard refer-

ence state (SRS) is taken at 25 oC and 0,1013 MPa. General 
equation of hydrocarbon combustion is:
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0
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(6)

The first part of equation 6 is reaction of fuel and oxy-
gen and the other part are exhaust gases. General equation 
of hydrocarbon combustion from the air:

2 23.7 03.76
2x y

fuel  air �lue gas

yC H aO aN xCO H O    aN

 +

 
  
 

2 2 2+ + → + +

 

(7)

The stoichiometric ratio of air and fuel can be written as:

a
s

f s

mA F
m

 
=   
   

(8)

The relative ratio is the ratio of the mixture of air and 
fuel and the stoichiometric mixture of air and fuel:

s

A F
A F

λ =
 

(9)

A commonly used quantity in practice is the equivalent 
ratio:

s

sλ
Φ = = =(A / F) (F / A)

(A / F) (F / A)  
(10)

Based on the volume amounts from the air mixture 
whereby there is 21% O2 and 79% N2 in the air it can be 
written [20], that the stoichiometric mixture of air and 
fuel then amounts:

4.76
4

1
a a

s
f fs

yx
m MA F
m M

 +    = = ⋅  
   

(11)

where Ma is molecular air mass and Mf is molecular fuel mass.

Cooling air
Gas turbine casing

Compressor air outletFuel oil nozzle

Flue gas stream to
the gas turbine

Figure 1 Gas turbine combustion chamber [17]
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3.2 Nonlinear algebraic combustion equation

The adiabatic combustion process is described by the 
nonlinear algebraic equation f (T) = 0. The procedure for 
solving this equation is based on the “Regula falsi” method 
or the secant method [21]. In the procedure it is necessary 
to perform an iteration in which the temperature T which 
will be found corresponds to the adiabatic combustion 
temperature a which represents the zero point of the func-
tion. Iteration procedure is based on the iterative scheme 
described by the equation:

1 1
1

1

( ) ( )
( ) ( )

i i i i
i

i i

T f T T f TT
f T f T

− −
+

−

−=
−  

(12)

in which the index i represents an iterative step. The it-
eration procedure is repeated until it is not satisfied con-
vergence criterion, taking the values of the unknowns 
calculated from of the previous step

ε+ −
≤1i i

i

T T
T  

(13)

4 Modelling and simulation

The paper presents a model of a gas turbine combus-
tion chamber using Modelica language, for modeling com-
plex physical systems with the aim of determining the 
temperature of combustion flue gases, specific heat capac-
ity, enthalpy, and flue gas composition at different gas tur-
bine loads.

Modelica [22] is an open standard for describing 
physical models and their components, whose is a core 
object-oriented language, which is suitable for describing 

complex physical systems from areas such as mechanics, 
electrical engineering, hydraulics and thermodynamics. 
The special interest is in the area of the separate produc-separate produc-
tion of heat energy from a boiler and cooling energy from 
a compression refrigeration unit. These are powered with 
electrical energy from an external network which could 
be replaced with a CCHP system (combined cooling, heat-
ing and power – combined cooling, heating and electric-
ity generation) based on the operation of a gas turbine 
and absorption refrigeration unit [23, 24]. The mentioned 
models are given to be described by differential-algebraic 
equations (DAE). Models described by differential alge-
braic equations are solved by applying different numeri-
cal methods (Euler, Runge – Kutta Dassl). Basing language 
development and ownership on open source principles 
has encouraged many manufacturers to develop and 
implement different versions of Modelica Simulation 
Environments as OpenModelica [25], MapleSim [26], 
Wolfram SystemModeler [27], SimulationX [28].

5 Analysis results and validation

The Modelica, results of simulations of the combus-
tion chamber model (Table 3 and Figure 3) of CH4, for 
variated values relative ratio λ and inlet air temperature 
to the combustion chamber of 600 K compared to the 
CHEMCAD [29] and Cantera [30] tool. The CHEMCAD is 
an integrated suite of intuitive chemical process simula-
tion software that fits into the chemical engineering work-
flow and supercharges an engineer’s efficiency. CHEMCAD 
combustion chamber tool uses mode of “Gibbs free energy 
reactor”. The CERFACS, [31] is Cantera based Adiabatic 
Flame Temperature Calculator based on the object-orient-
ed software toolkit for chemical kinetics, thermodynamics, 

Combustion air inlet temperature T , [K]a

Excess air, λ

adCombustion temperature, CH , T  , [K]4

Qloss

600.0000 -

4.0000 -

1200.6966 -

mg

Tg

TO

TZ

f(x)

f(x)

f(x)

f(x)

f(x)x

x

y

y

y

y

x

x

TO

Tz

Hr

x y

T2

Tad
cp_dp
Hp

m
g

QgTg

cp
_d

g

Figure 2 Modelica the combustion chamber model 

Source: Authors
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and transport processes. The code utilizes object-ori-
ented concepts for robust yet flexible phase models, and 
algorithms are generalized so that users can explore dif-
ferent phase models with minimal changes to their over-
all code. Currently, Cantera can be used from Python and 
MATLAB, or in applications written in C/C++ and Fortran 
90. Cantera also provides a limited number of solvers for 
time-dependent reactor networks and steady one-dimen-
sional reacting flows.

6 Conclusion

The validity of the gas turbine unit model largely de-
pends on the accuracy of the flue gas temperature value 
calculation at the gas turbine inlet (TIT). This tempera-
ture is determined by the temperature of the flame in the 
combustion chamber. In variable running mode, the tem-
perature value is regulated by changing the air to fuel ra-
tio at the inlet to the combustion chamber. Application 
of Modelica in the development of a model of the control  

volume of the combustion chamber of a gas turbine, shows 
excellent results which allow to make a valid model of a 
gas turbine unit. Modelica main task is to calculate the 
combustion temperature of flue gases and the size and 
volume fraction of individual combustion participants and 
simulation of combustion chamber operation validated 
with equipment manufacturer values tools. As the real 
data for such simulated processes is difficult to collect due 
to limited research budget the validation of the Modelica 
(SimulationX) computed values were compared and vali-
dated by combustion process simulation with CHEMCAD 
and CERFACS (Cantera).

Nomenclature

Abbreviation
SRS Standard reference state
TIT Temperature of exhaust gases at gas 

turbine inlet 
[K]

Latin symbols
A Air
F Fuel
h Enthalpy [kJ/kmol]
ṁ Mass flow rate [kg/s]
M Molar mass [kg/kmol]
N Plural substance
r Volume ratio [%]
Q Power [kW]
T Temperature [K]

Greek symbols
Φ Equivalent ratio
λ Relative ratio

Index
a Air

ad Adiabatic
f Fuel

fo Formation
g Gas
o Reference
P Product
R Reactant
s stoichiometric

Table 3 Comparative results of adiabatic combustion temperature simulation

 Tad (K)
λ Φ Ta (K) MODELICA CHEMCAD CERFACS
3 0,3333 600 1.375,87 1.379,99 1391,98

3,5 0,2857 600 1.277,10 1.265,12 1291,53
4 0,2500 600 1.200,70 1.203,79 1213,82

4,5 0,2222 600 1.139,85 1.130,15 1151,84
5 0,2000 600 1.090,25 1.081,42 1101,38

5,5 0,1818 600 1.049,05 1.040,94 1059,36

Source: Authors

Figure 3 Values of adiabatic flame temperature as a function 
relative ratio λ 

Source: Authors
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