Utjecaj geomagnetskih učinaka na određivanje položaja sustavom GPS tijekom geomagnetske oluje 8. rujna 2017. godine

Štampalija, Jakov

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Rijeka, Faculty of Maritime Studies, Rijeka / Sveučilište u Rijeci, Pomorski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:187:102568

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-29

Repository / Repozitorij:

Sveučilište u Rijeci, Pomorski fakultet University of Rijeka, Faculty of Maritime Studies

Repository of the University of Rijeka, Faculty of Maritime Studies - FMSRI Repository

SVEUČILIŠTE U RIJECI

POMORSKI FAKULTET

JAKOV ŠTAMPALIJA

UTJECAJ GEOMAGNETSKIH UČINAKA NA ODREĐIVANJE POLOŽAJA SUSTAVOM GPS TIJEKOM GEOMAGNETSKE OLUJE 8. RUJNA 2017. GODINE

DIPLOMSKI RAD

Rijeka, 2023.

SVEUČILIŠTE U RIJECI

POMORSKI FAKULTET

UTJECAJ GEOMAGNETSKIH UČINAKA NA ODREĐIVANJE POLOŽAJA SUSTAVOM GPS TIJEKOM GEOMAGNETSKE OLUJE 8. RUJNA 2017. GODINE

THE INFLUENCE OF GEOMAGNETIC EFFECTS ON THE GPS POSITION DETERMINATION DURING A GEOMAGNETIC STORM ON SEPTEMBER 8. 2017.

DIPLOMSKI RAD

Kolegij: Primijenjena satelitska navigacija

Mentor: izv. prof. dr. sc. David Brčić

Komentor: prof. emer. Serdo Kos

Student: Jakov Štampalija

Studijski program: Nautika i tehnologija pomorskog prometa

JMBAG: 0269109598

Rijeka, travanj 2023.

Student: Jakov Štampalija

Studijski program: Nautika i tehnologija pomorskog prometa

JMBAG: 0269109598

IZJAVA O SAMOSTALNOJ IZRADI DIPLOMSKOG RADA

Kojom izjavljujem da sam završni rad s naslovom

UTJECAJ GEOMAGNETSKIH UČINAKA NA ODREĐIVANJE POLOŽAJA SUSTAVOM GPS TIJEKOM GEOMAGNETSKE OLUJE 8. RUJNA 2017. GODINE

izradio samostalno pod mentorstvom

izv. prof. dr. sc. Davida Brčića

te komentorstvom

prof. emer. Serða Kosa

U radu sam primijenio metodologiju izrade stručnog/znanstvenog rada i koristio literaturu koja je navedena na kraju završnog rada. Tuđe spoznaje, stavove, zaključke, teorije i zakonitosti koje sam izravno ili parafrazirajući naveo u završnom radu na uobičajen, standardan način citirao sam i povezao s fusnotama i korištenim bibliografskim jedinicama, te nijedan dio rada ne krši bilo čija autorska prava. Rad je pisan u duhu hrvatskoga jezika.

Student

Jakov Štampalija

Student: Jakov Štampalija Studijski program: Nautika i tehnologija pomorskog prometa JMBAG: 0269109598

IZJAVA STUDENTA – AUTORA

O JAVNOJ OBJAVI OBRANJENOG DIPLOMSKOG RADA

Izjavljujem da kao student – autor diplomskog rada dozvoljavam Pomorskom fakultetu Sveučilišta u Rijeci da ga trajno javno objavi i besplatno učini dostupnim javnosti u cjelovitom tekstu u mrežnom digitalnom repozitoriju Pomorskog fakulteta.

U svrhu podržavanja otvorenog pristupa diplomskim radovima trajno objavljenim u javno dostupnom digitalnom repozitoriju Pomorskog fakulteta, ovom izjavom dajem neisključivo imovinsko pravo iskorištavanja bez sadržajnog, vremenskog i prostornog ograničenja mog diplomskog rada kao autorskog djela pod uvjetima Creative Commons licencije CC BY Imenovanje, prema opisu dostupnom na <u>http://creativecommons.org/licenses/</u>

Student – Jakov štampalija

SAŽETAK

Cilj ovog rada je određivanje utjecaja geomagnetskih učinaka na određivanje položaja sustavom GPS (engl. *Global Positioning System* - GPS) tijekom geomagnetske oluje 8. Rujna 2017. godine. Unutar rada ispituje se globalni učinak geomagnetske oluje na geomagnetsko polje što za rezultat ima degradaciju položajnih koordinata opservacijskih stanica. Stanice se nalaze na raznim geografskim širinama radi kvalitetnijeg prikaza cijelog procesa.

Temelj istraživanja je teorijska osnova koja obuhvaća utjecaj svemirskog vremena na propagaciju GPS signala koja je neophodna za praktično istraživanje te je navedena na početku rada. Ona obuhvaća glavna svojstva navigacijskog sustava GPS, strukture i dinamike magnetskog polja, kako Sunca tako i Zemlje i svemirsko vrijeme, koje obuhvaća interakciju magnetskog polja Sunca i Zemlje te njihov utjecaj na GPS signal. Istraživanje obuhvaća ispitivanje stanja svemirskog vremena kroz geomagnetske pokazatelje i geomagnetsko polje te njihov utjecaj na odstupanje položajnih koordinata. Određeno je razdoblje od pet dana promatranja zbog što kvalitetnijeg uvida u cijelu dinamiku procesa. Također, određeno je područje istraživanja koje obuhvaća različite geografske širine (od polova prema ekvatoru) u blizini nultog meridijana. Prvo se pristupilo ispitivanju geomagnetskih pokazatelja koji ukazuju na dinamično napredovanje geomagnetske oluje. Zatim se pristupilo ispitivanju komponenti magnetskog polja promatranih stanica magnetskih opservatorija s ciljem određivanja u kojoj mjeri je stvoren geomagnetski poremećaj na različitim geografskim širinama. Ispitivanja odstupanja položajnih koordinata su također vršena na opservacijskim stanicama koje se također nalaze na različitim geografskim širinama i u blizini stanica magnetskih opservatorija. Na posljetku korelacijskom analizom je utvrđen utjecaj geomagnetskih učinaka na određivanje položaja sustavom GPS tijekom geomagnetske oluje za promatrano područje u promatranom periodu. Tijekom istraživanja koristile su se razne statističke metoda s ciljem kvalitetnog i logičkog zaključivanja.

Ključne riječi: GPS, geomagnetska oluja, geomagnetsko polje, svemirsko vrijeme, magnetosfera, ionosfera, geomagnetski pokazatelji, komponente geomagnetskog polja, određivanje položaja, ukupni proračun pogreške položaja, ionosfersko kašnjenje.

SUMMARY

The aim of this paper is to determine the impact of geomagnetic effects on positioning with the Global Positioning System during the geomagnetic storm on September 8, 2017. The paper examines the global effect of a geomagnetic storm on the geomagnetic field, which results in the degradation of the positional coordinates of the observation stations. The stations are located at various latitudes for a better representation of the entire process.

At the beginning of the paper, the theoretical basis is stated, which includes the influence of space weather on the propagation of the GPS signal, which is the foundation of the research and is necessary for practical research. It includes the main properties of the GPS navigation system, structure and dynamics of the magnetic field of both the Sun and the Earth, and space weather, which includes the interaction of the Sun's and Earth's magnetic fields and their influence on the GPS signal. The research includes monitoring of geomagnetic indicators, the geomagnetic field and their influence on the positioning error in a certain observed period. A period of five days of observation was determined for the purpose of better insight into the entire dynamics of the process. A research area covering different latitudes (from the poles to the equator) near the prime meridian has also been determined The first step was to examine the geomagnetic indicators that indicate the dynamic progress of the geomagnetic storm. Then the examination of the components of the magnetic field of the observed magnetic observatories was started with the aim of determining to what extent a geomagnetic disturbance was created at different latitudes. An overview of the position error of observation stations, which are also located at different latitudes and are near the magnetic observatories, was made. Finally, through a correlation analysis, the influence of geomagnetic effects on determining the position with the GPS system during a geomagnetic storm for the observed area in the observed period was determined. During the research, various statistical methods were used with the aim of qualitative and logical reasoning.

Keywords: GPS, geomagnetic storm, geomagnetic field, space weather, magnetosphere, ionosphere, geomagnetic indices, geomagnetic field components, position determination, total position error calculation, ionospheric delay.

SAŽETAK	I
SUMMARY	II
SADRŽAJ	IIII
1. UVOD	1
1.1. PROBLEM, PREDMET I OBJEKT ISTRAŽIVANJA	2
1.2. RADNA HIPOTEZA	2
1.3. SVRHA I CILJEVI ISTRAŽIVANJA	
1.4. ZNANSTVENE METODE	
1.5. STRUKTURA RADA	
2. NAVIGACIJSKI SUSTAV GPS	5
2.1. SEGMENTI SUSTAVA	5
2.1.1. Prostorni segment	6
2.1.2. Kontrolni segment	7
2.1.3. Korisnički segment	7
2.2. STRUKTURA GPS SIGNALA	
2.2.1. Navigacijska poruka	9
2.3. PRINCIP ODREĐIVANJA POLOŽAJA POMOĆU GPS SIGNALA	
2.4. POGREŠKE KOJE SE POJAVLJUJU PRILIKOM ODREĐIVANJA PO 14)LOŽAJA
2.4.1. Korisnička razdioba pogreške	14
2.4.2. Geometrijska razdioba točnosti	
3. SUNCE	17
3.1. STRUKTURA SUNCA	17
3.1.1. Unutrašnji slojevi Sunca	
3.1.2. Vanjski slojevi Sunca	19
3.2. MAGNETSKO POLJE SUNCA	
3.2.1. Sunčev ciklus	
3.2.2. Ostale magnetske pojave	
3.3. UTJECAJ SUNČEVIH MAGNETSKIH AKTIVNOSTI NA SVEMIRSK VRIJEME	O
3.3.1. Sunčev vjetar kao stvaraoc međuplanetarnog magnetskog polja	
3.3.2. Sunčeve baklje i koronarni izbačaj mase	

SADRŽAJ

4. ZEMLJA	31
4.1. GEOMAGNETSKO POLJE	32
4.2. MAGNETOSFERA	34
4.2.1. Struktura magnetosfere	34
4.2.2. Magnetosferska električna polja	36
4.2.3. Magnetosferski sustav struja	37
4.2.4. Magnetosferska plazma	39
4.3. OSNOVNE ZNAČAJKE I PROCES FORMIRANJA IONOSFERE	40
5. SVEMIRSKO VRIJEME	44
5.1. GEOMAGNETSKI INDEKSI	45
5.2. DINAMIKA GEOMAGNETSKIH POREMEĆAJA	46
5.2.1. Geomagnetske pod-oluje	47
5.2.2. Geomagnetske oluje	49
5.3. UTJECAJ GEOMAGNETSKIH POREMEĆAJA NA IONOSFERU	51
5.3.1. Ionosfera viših geografskih širina	52
5.3.1. Ionosfera srednjih i nižih geografskih širina	53
5.4. UTJECAJ IONOSFERE NA GPS SIGNAL	53
5.4.1. Degradacija GPS signala uslijed ionosferske oluje	56
6. METODOLOGIJA ISTRAŽIVAČKOG RADA	58
6.1. VREMENSKI PERIOD I GEOGRAFSKO PODRUČJE ISTRAŽIVANJA	58
6.2. IZVORI, PRIKUPLJANJE I PRIPREMA ISTRAŽIVAČKIH PODATAKA	59
6.3. KORIŠTENI ALATI TIJEKOM ISTRAŽIVANJA	60
6.4. METODE OBRADE I ANALIZE PRIKUPLJENIH PODATAKA	61
6.4.1. Proračun odstupanja položaja	61
6.4.2. Statistička analiza	62
6.4.2.1. Metode centralne tendencije	63
6.4.2.2. Metode raspršenosti/disperzije podataka	64
6.4.2.3. Korelacijska analiza	64
7. UTJECAJ GEOMAGNETSKIH UČINAKA NA ODREĐIVANJE POLOŽAJA SUSTAVOM GPS TIJEKOM GEOMAGNETSKE OLUJE 8. RUJNA 2017. GODIN	E 66
7.1. ANALIZA GEOMAGNETSKIH POKAZATELJA	66
7.2. ANALIZA KOMPONENTI GEOMAGNETSKOG POLJA	70
7.3. ANALIZA ODSTUPANJA POLOŽAJNIH KOORDINATA	84

7.4. ANALIZA KORELACIJE GEOMAGNETSKIH UČINAKA I ODSTUPANJA POLOŽAJNIH KOORDINATA	88
8. REZULTATI ISTRAŽIVANJA I RASPRAVA	93
9. ZAKLJUČAK	96
LITERATURA	98
POPIS KRATICA	106
POPIS SLIKA	109
POPIS TABLICA	110
POPIS GRAFIKONA	111
PRILOG 1. REZULTATI KORELACIJE	112
PRILOG 2. PROGRAMSKI KOD	119

1. UVOD

Satelitsko određivanje položaja u prostoru danas je važnije nego ikad. Od gospodarskih, vojnih pa sve do civilnih upotreba, ljudima u širokom spektru djelatnosti je potrebno što preciznije određivanje položaja. Satelitski sustavi kao ključni dijelovi cijelog sustava pozicioniranja podložni su određenim pogreškama što u konačnici dovodi do nepreciznih i nepouzdanih položajnih koordinata korisnika sustava. Pogreške koje dovode do odstupanja položaja korisnika se mogu podijeliti na unutarnje uvjetovane (segmenti satelitskog navigacijskog sustava) i vanjske uvjetovane (zemljin okoliš i svemirsko vrijeme). Promatrajući kroz povijest satelitski sustavi su se razvijali i samim tim unutarnje uvjetovane pogreške u preciznosti određivanja položaja su se smanjivale međutim signal koji generira satelit je i dalje podložan na pogreške koje su uzrokovane vanjskim uvjetima primarno djelovanjima Sunčevih aktivnosti na koje se i dan danas se teško može utjecati.

Generirani satelitski signal je radio val koji je dio spektra elektromagnetskih valova. Sunce kao jedan veliki magnet utječe na svoju okolinu unutar koje se nalazi Zemlja sa svojim magnetskim poljem i satelitima. Svaka aktivnost na Suncu se manifestira kao poremećaj magnetskog polja Sunca koja u većoj ili manjoj mjeri imaju utjecaj na okolinu. U vremenima većih poremećaja Sunčevog magnetskog polja, Zemljino magnetsko polje je podložno velikim promjenama u strukturi što u konačnici ima utjecaj na satelite i satelitski signal.

Tema ovog diplomskog rada je utjecaj geomagnetskih učinaka na određivanje položaja sustavom GPS tijekom geomagnetske oluje 8. rujna 2017. godine unutar kojeg je napravljena analiza magnetskih pobuda od njihovog nastanka na Suncu pa sve do njihovog djelovanja na GPS signal gdje se nastojalo dobiti uvid u povezanost te utjecaj geomagnetske oluje i veličine odstupanja GPS signala.

1.1. PROBLEM, PREDMET I OBJEKT ISTRAŽIVANJA

Problem istraživanja ovog diplomskog rada je odrediti u kojoj mjeri je geomagnetska oluja utjecala na proces određivanja položaja pri različitim geografskim širinama u odabranom promatranom periodu vremena. Dinamika geomagnetskih oluja je obrađena u velikoj mjeri u znanstvenoj zajednici a s tom spoznajom u ovom diplomskom radu željelo se kroz analizu prikazati dinamično kretanje određene geomagnetske oluje kao rezultat perturbacija geomagnetskog polja i povezanosti s pogreškama određivanja položaja putem GPS satelitskog sustava.

Objekti istraživanja su: geomagnetski pokazatelji, komponente geomagnetskog polja promatranih stanica i koordinatna odstupanja promatranih stanica.

1.2. RADNA HIPOTEZA

Radna hipoteza diplomskog rada glasi:

Određivanje položaja korisnika na Zemlji sustavom GPS popraćeno je određenim odstupanjima u proračunatim koordinatama za vrijeme poremećaja svemirskog vremena.

Na temelju provedenog istraživanja i analize statističkih podataka položajnih zapisa, komponenti geomagnetskog polja i geomagnetskih pokazatelja otvoreno je nekoliko novih pomoćnih hipoteza.

(1) Odstupanja su različita za korisnike na različitim geografskim širinama. (2) Dinamične promijene komponenti geomagnetskog polja su rezultat utjecaja magnetskih aktivnosti na površini Sunca. (3) Dinamično kretanje geomagnetskih pokazatelja i komponenti geomagnetskog polja pokazuju veću povezanost u promatranom periodu dana geomagnetske oluje nego li u promatranom periodu mirnog dana. (4) Povezanost između dinamike odstupanja položajnih koordinata i komponenti geomagnetskog polja u promatranom periodu odgovara dinamičnim procesima unutar sustava magnetosfera-ionosfera u periodima poremećaja svemirskog vremena.

Rezultati istraživanja ne mogu predstavljati opću zakonitost problema istraživanja zbog premalog uzorka.

1.3. SVRHA I CILJEVI ISTRAŽIVANJA

Svrha istraživanja je odrediti u kojoj mjeri su odstupanja položajnih koordinata pratila dinamično kretanje geomagnetske oluje pri visokim, srednjim i nižim geografskim širinama u određenom promatranom periodu vremena.

Ciljevi istraživanja teoretski prikazati strukturu i svojstva GPS signala te geomagnetskih oluja od njihovog nastanka na Suncu pa sve do geomagnetskog učinka na Zemlju i GPS signal. Istraživanjem prikupiti, statistički obraditi i analizirati geomagnetske pokazatelje, komponente geomagnetskog polja INTERMAGNET-ovih promatranih stanica i položajne zapise IGS promatranih stanica. Zatim grafički prikazati i analizirati dinamiku kretanja geomagnetske oluje kroz navedene geomagnetske pokazatelje i komponente geomagnetskog polja za svaku promatranu INTERMAGNET-ovu stanicu i dinamiku položajnih odstupanja za svaku IGS promatranu stanica. Za kraj usporediti dobivene rezultate i iznijeti zaključak na temelju rezultata.

1.4. ZNANSTVENE METODE

Prilikom izrade ovog diplomskog rada koristile su se klasične znanstvene, matematičke i statističke metode: metoda analize i sinteze, metoda kompilacije i deskripcije, metoda zaključivanja, statističke metode, metode statističkog zaključivanja, metoda dokazivanja i opovrgavanja, komparativna metoda, metoda klasifikacije, metoda promatranja i metoda studije.

1.5. STRUKTURA RADA

Ovaj diplomski rad se sastoji od 8 poglavlja i svrstava se u istraživački rad koji je podijeljen u dva dijela, prvi dio je teorijska osnova koji obuhvaća prvih 5 poglavlja i praktični ili samostalni istraživački dio koji obuhvaća preostala 3 poglavlja.

U prvom, uvodnom poglavlju opisani su: problem, predmet i objekt istraživanja, radna hipoteza, svrha i ciljevi istraživanja, znanstvene metode koje su korištene tijekom istraživanja i na kraju struktura cijelog rada.

U drugom poglavlju čije ime nosi "Navigacijski sustav GPS "iznesene su teorijske osnove GPS satelitskog sustava. Definirani i okarakterizirani su segmenti sustava i detaljno je opisan signal koji GPS satelit generira, iznesen je teorijski princip određivanja položaja putem GPS sustava i obrađene su pogreške koje se pojavljuju prilikom istog. Zadnji dio poglavlja predstavlja

najznačajniji dio jer unutar njega definiranu su određene smetnje koje će se dalje kroz rad detaljno opisati od nastanka pa do krajnjeg djelovanja.

U trećem poglavlju "Sunce " opisana je struktura sunca kroz dinamične procese i nastanak magnetskog polja Sunca što za posljedicu ima elektromagnetsko zračenje. Kroz magnetizam Sunca definirane su i okarakterizirane magnetske pojave na površini Sunca čijim promatranjem opisuje se stanje Sunčeve aktivnosti. Nadalje opisano je djelovanje Sunca na njezin okoliš kroz međudjelovanje magnetskog polja Sunca i Sunčevih aktivnosti.

U četvrtom poglavlju "Zemlja" opisuje se magnetsko polje Zemlje od njezinog nastanka, strukture i svojstva. Opisana je detaljno magnetosfera kroz dinamično djelovanje Sunca na geomagnetsko polje i ukratko svojstva ionosfere.

U petom poglavlju "Svemirsko vrijeme" opisana je interakcija između dinamičnog djelovanja Sunca i Zemlje kroz aspekt geomagnetskih poremećaja koje za posljedicu imaju učinak na GPS signal.

U šestom poglavlju "Metodologija istraživačkog rada " opisan je tijek istraživačkog rada od odabira područja istraživanja, vremenskog perioda istraživanja, objekta za prikupljanje i obradu podataka istraživanja, do alata koji su korišteni za pripremu, obradu i analizu prikupljenih podataka. Također navedene su metode obrade i analize prikupljeni podataka.

U sedmom poglavlju "Utjecaj geomagnetskih učinaka na određivanje položaja sustavom GPS tijekom geomagnetske oluje 8. rujna 2017. godine" opisani su i analizirani statistički podatci, grafički prikazi, histogrami promatranih istraživačkih parametara i kroz korelacijske matrice napravljena je analiza utjecaja geomagnetskih učinaka na GPS signal za pojedino geografsko područje.

U osmom poglavlju "Rezultati istraživanja i rasprava" opisana je i analizirana korelacijska matrica mirnog dana i dana geomagnetske oluje te su na temelju istog izneseni zaključci, činjenice i komentari na izvedeno istraživanje.

U zadnjem poglavlju dan je općenit zaključak globalnog djelovanja geomagnetske oluje na GPS signal unutar kojeg se potvrđuje ili opovrgava postavljenja hipoteza.

2. NAVIGACIJSKI SUSTAV GPS

Globalni navigacijski satelitski sustav (engl. *Global Navigation Satelite System* – GNSS) opisuje sustav satelita koji kruže u zemljinoj orbiti. Takvi sustavi navigacijski satelita poput američkog GPS-a, ruskog GLONASS-a (rus. *GLObal'naya NAvigatsionnaya Sputnikovaya Sistema* – GLONASS), europskog Galilea, kineskog Beidoa, japanskog QZSS-a (engl. *Quazi-Zenth Satelite System* – QZSS) i niza drugih satelita različitih proizvođača pružaju usluge određivanja položaja korisnika na zemlji te prilikom kretanja korisnika kroz prostor određivanje smjera i brzine te informacije o vremenu tj. PVT (engl. *Position, Velocity and Time* - PVT) informacije.¹ Najrazvijeniji globalni navigacijski sustavi je američki GPS. Prednost GPS-a iznad ostalih sustava je sama brojnost aktivnih tj. funkcionalnih satelita u zemljinoj orbiti. U poglavlju se nadalje opširnije opisuju segmenti, struktura GPS signala, način određivanja položaja pomoću GPS signala i pogreške koje se pojavljuju prilikom određivanja položaja.

2.1. SEGMENTI SUSTAVA

GPS sustav se sastoji ne samo od satelita nego i od antena koje komuniciraju sa satelitom te od prijemnika koji dobivaju informacije od satelita. Stoga cijeli sustav je podijeljen na:²

- Prostorni segment (sateliti u orbiti zemlje)
- Kontrolni segment (kontrolne stanice, predajne antene)
- Korisnički segment (korisnička oprema)
- Zemljin okoliš

Temeljni princip funkcioniranja cijelog sustava je komunikacija. Prostorni segment komunicira s kontrolnim segmentom i s korisničkim segmentom. Prostorni segment odašilje signale koje sadrže informacije vezane za određivanje položaja koje korisnički segment prima, dok kontrolni segment kontrolira prostorni segment i prati da li satelit odašilje ispravne informacije. Iako zemljin okoliš ne predstavlja fizičku komponentu on ima ogroman utjecaj na signal koji satelit odašilje prema korisniku.

¹ Jin, S., Cardellach, E. i Xie F.: *GNSS Remote Sensing, Theory, Methods and Applications. Remote Sensing and Digital Image Processing, Volume 19*, Springer, Dordrecht Heidelberg New York London, 2014. p, 8.

² Brčić, D.:*Model nespecifičnoga dnevnog hoda ionosferskog kašnjenja signala za satelitsko određivanje položaja*, Sveučilište u Rijeci, Pomorski fakultet u Rijeci, Rijeka 2015. p. 7.

2.1.1. Prostorni segment

Prostorni segment GPS navigacijskog sustava predstavljaju sateliti koji su raspoređeni u šest orbitalnih ravnina od A - F, gdje svaka ravnina sadrži četiri satelita što znači ukupno raspoloživih 24 satelita. Orbitalne ravnine su razmaknute za 60° jedna od druge i u odnosu na ekvatorijalnu ravninu sateliti su nagnuti za 55°. Vrijeme koje je potrebno da jedan satelit okruži oko zemlje unutar svoje orbitalne ravnine je jednako 11 sati 58 minuta 2 sekunde tj. polovini sideričkog dana.³ To vrijeme odgovara da jedan satelit dva puta u danu prijeđe preko jedne pozicije na zemlji. Zbog svog rasporeda svakoj lokaciji na zemlji su dostupna minimalno četiri satelita što je dovoljno za određivanje položaja korisnika, međutim većina lokacija na zemlji ima dostupno šest a i ponekad dvanaest satelita.⁴ Sateliti se nalaze na visini od otprilike 20 000 *km* te je trenutno aktivno operabilnih 31 satelit i neaktivno 4 koji stoje u pripravnosti.⁵

Slika 1. Pregled orbitalnih ravnina

Izvor: http://ndl.ethernet.edu.et/bitstream/123456789/87883/6/Chapter%205%20-%20Introduction%20to%20%20GPS%2C%20GIS%20and%20Remote%20Sensing%2C.pdf

Sateliti su opremljeni opremom i sustavima vrlo visoke preciznosti kao što su precizni atomski satovi, navigacijske antene, AODC (engl. *Attitude and Orbit Determination and Control* – AODC) sustavom za održavanjem i kontrolom visine i orbite, TT&C (engl. *Tracking, Telemetry*

³ Subirana, J. S., Zornoza, J. J. M. i Hernandez-Pajares, M.: *GNSS Data Processing. Volume I: Fundamentals and Algorithms.* Noordwijk, The Netherlands: ESA Communications, (2013). p. 7.

⁴ Carter, C.: *Principles of GPS, A Brief Primer on the Operation of the Global Positioning System*, Allen Osborne Associates, California, 1997. p.

⁵ Dawoud, S.: GNSS principles and comparison, Potsdam University, Potsdam, Germany. 2012. p. 2.

and Command - TT&C) sustavom za praćenje, telemetriju i upravljanje, oprema za napajanje te raznom drugom opremom i sistemima koji omogućuju pravilno funkcioniranje satelita.⁶

2.1.2. Kontrolni segment

Kontrolni segment GPS navigacijskog sustava sastoji se od glavne upravljačke stanice, zamjenske upravljačke stanice, stanicama za praćenje satelita i odašiljačkim antenama.⁷ Kontrolni segment GPS-a zadužen je za pravilno funkcioniranje satelita tj. praćenje satelita, predviđanje efemerida, usklađivanje GPS vremena satelita i slanje navigacijski poruka u pravilnim vremenskim intervalima. Glavna kontrolna stanica ima zadatak prikupljati podatke od satelita preko stanica za praćenje satelita koje su opremljene GPS prijamnicima i na temelju tih podataka generiraju navigacijske poruke koje u sebi sadrže ispravke atomskih satova, efemeride satelita i ostale informacije potrebne za pravilno funkcioniranje satelita i šalje navigacijske poruke satelita nena.⁸ Zamjenska upravljačka stanica služi kao stanica u nuždi u slučaju kvara, održavanja ili nedostupnosti glavne stanice.

2.1.3. Korisnički segment

Korisnički segment predstavlja GPS prijemnik koji se sastoji od antene koja prima signale odaslane sa satelita i konvertira signal u oblik električne struje koja se dalje šalje prema ulaznom sučelju gdje kod starijih modela se signal pojačava i filtrira kroz procesne kanale gdje prijamnik ih mora imati minimalno četiri da odredi poziciju i vrijeme uobičajeno ih ima više, kod novijih modela radi se analogno digitalna konverzija.⁹ Nadalje, elektronički signal se šalje u procesor gdje se vrši usporedba ili korelacija između generiranoga signala unutar prijamnika i signala primljenog sa satelita tj. mjeri se fazni pomak unutar koda signala s ciljem određivanja vremena širenja signala.¹⁰ Također iz primljenog signala koji sadrži navigacijsku poruku izdvajaju se ključne

⁶ Jin, S., Cardellach, E. i Xie F., op.cit., p. 9.

⁷ Raju, P., L., N.: Satellite Remote Sensing and GIS Applications in Agricultural Meteorology and WMO Satellite Activities, Chapter: Fundamentals of GPS, World Meteorological Organisation, Geneva, Switzerland, 2004. p. 133.

⁸ Subirana, J. S., Zornoza, J. J. M. i Hernandez-Pajares, M., op.cit, p. 14

⁹ Raju, P., L., N., op. cit., p. 136.

¹⁰ Brčić, D., op.cit., p. 9.

informacije koje su potrebne da bi se odredila pozicija i vrijeme. Prijamnik mora imati i izvor napajanja, prikaznu jedinicu za upravljanje prijemnikom i memoriju za spremanje podataka.

2.2. STRUKTURA GPS SIGNALA

GPS signal koji su odaslani sa satelita s ciljem određivanja pozicije korisnika na zemlji se nalazi u L frekvencijskom pojasu između 1 i 2 *GHz*. Signal se sastoji od:¹¹

- Val nosioc
- Kodirani signal
- Navigacijska poruka

Val nosioc predstavlja frekvenciju koja je generirana i odaslana sa satelita. GPS signali se emitiraju na trima frekvencijama: 1575,42 *MHz* (L1), 1227,60 *MHz* (L2) i 1176,45 *MHz* (L3) i svaka ova frekvencija predstavlja vala nosioca koji je višekratnik osnovne frekvencije od 10,23 *MHz*.¹²

Slika 2. Struktura i modulacija C/A koda na L1 val nosioc

Izvor: Brčić, D.:Model nespecifičnoga dnevnog hoda ionosferskog kašnjenja signala za satelitsko određivanje položaja, Sveučilište u Rijeci, Pomorski fakultet u Rijeci, Rijeka 2015. p. 13.

¹¹ Subirana, J. S., Zornoza, J. J. M. i Hernandez-Pajares, M., op.cit, p. 20.

¹² Zhang, W. I Suh, H.: *Analysis of Coarse Acquisition Code Generation Algorithm in GPS System,* Journal of the KIECS, vol.12., No.1, 2017., p. 62.

Kodirani signali skupa sa navigacijskom porukom su modulirani na val nosioc. Kodirani signali nazivaju se PRN (engl. *Pseudorandom noise* – PRN) kodovi ili pseudoslučajni kodovi. PRN kodovi predstavljaju binarni niz jedinica i nula bolje poznatih kao bitovi i oni su skupa s navigacijskom porukom modulirani na val nosioc promjenom faze vala nosioca za 180° kada vrijednost koda s jedinice promijeni se na nulu tehnikom poznatoj kao BPSK (engl. *Binary Phase Shift Keying* – BPSK). PRN kodovi se dijele na C/A (engl. *coarse / acquisition* – C/A) kod koji je bolje poznat kao kod za civilnu upotrebu koji se modulira na L1 frekvenciju i P (engl. *precision* – P) kod ili precizni kod koji se modulira na L1 i L2 frekvencije.¹³ C/A kod se sastoji od 1023 bita koji se ponavljaju svakih milisekundu i sadrži informacije o vremenu kada je odaslan signal sa satelita s ciljem određivanja pseudoudaljenosti.¹⁴ P (Y) kod se ponavlja svaki 38 tjedana i on također sadrži informacije o vremenu odašiljanja signala međutim mnogo preciznije vrijeme u odnosu na C/A kod zato što ovaj kod mogu koristiti samo autorizirane osobe ili američka vojska.¹⁵

Navigacijska poruka se sastoji od 50 bitova, ponavlja se svakih 30 sekundi i modulirana je skupa sa PRN kodovima na L1 i L2 val. Međutim svi sateliti šalju signale na istim frekvencijama. Tehnikom višestrukog pristupa s kodnom raspodjelom (engl. *Code Division Multiple Access –* CDMA) omogućeno je da se na istim frekvencijama mogu prenositi signali koji su jedinstveni za svaki satelit posebno.¹⁶

2.2.1. Navigacijska poruka

Navigacijska poruka sadrži važne informacije vezane za određivanje položaja satelita u zemljinoj orbiti u odnosu na korisnika. Navigacijske poruke dijele se na L1 C/A poruku i modernizirane oblike L2 CNAV, CNAV-2, L5-CNAV i vojni MNAV.¹⁷ Na sljedećoj slici prikazuje se struktura L1 C/A navigacijske poruke.

¹³ Dawoud, S., op.cit., p.2

¹⁴ Zhang, W. I Suh, H., op.cit.

¹⁵ Jin, S., Cardellach, E. i Xie F., op.cit., p. 10.

¹⁶ Subirana, J. S., Zornoza, J. J. M. i Hernandez-Pajares, M., op.cit, p. 19.

¹⁷ Subirana, J. S., Zornoza, J. J. M. i Hernandez-Pajares, M., .: *GPS Navigation Message*, University of Catalunia, Spain, esa navipedia, 2011., online:(<u>https://gssc.esa.int/navipedia/index.php/GPS_Navigation_Message</u>)

Slika 3. Struktura navigacijske poruke

Izvor: https://gssc.esa.int/navipedia/index.php/File:Navigation_Message.png

Navigacijska poruka se sastoji od 25 okvira (engl. *Frames*) gdje svaki okvir ima trajanje 30 sekundi a svaki okvir se sastoji od pet pod-okvira (engl. *Subframes*) koji sadrže svaki po deset riječi tj. informacija o satelitu. Prve dvije riječi svakog podokvira su TLM (engl. *Telemetry word* – TLM) i HOW (engl. *Handower word* – HOW) riječi koje sadrže informacije o sinkronizaciji i GPS vremenu.¹⁸

Prvi podokvir sadrži informacije o ispravcima satelitskih satova, drugi i treći podokvir sadrže informacije o efemeridima satelita dok četvrti i peti podokvir sadrže informacije vezane za ionosferske ispravke u slučaju određivanja položaja korisnika jedno frekvencijskim opažanjem, informacije o razlici GPS i UTC (engl. *Universal Time Coordinated* – UTC) vremene, položaju (almanah) i stanju ostalih GPS satelita.¹⁹

Razlog zašto navigacijska poruka ima 25 okvira je taj što informacije o almanahu satelita ne stanu unutar četvrtog i petog podokvira od jednog okvira, pa se te informacije nadopunjavaju unutar 25 okvira dok informacije od prvog, drugog i trećeg podokvira se samo ponavljaju.²⁰

¹⁸ Subirana, J. S., Zornoza, J. J. M. i Hernandez-Pajares, M., op.cit, p. 24.

¹⁹ Raju, P., L., N., op. cit., p. 131.

²⁰ Dawoud, S., op.cit., p.3.

2.3. PRINCIP ODREĐIVANJA POLOŽAJA POMOĆU GPS SIGNALA

Da bi korisnik odredio poziciju na zemlji potrebno je da njegov GPS prijamnik odredi na kojoj se udaljenost on nalazi u odnosu na satelit. Kako sateliti u orbiti zemlje konstantno odašilju GPS signale, GPS prijamnik prima te signale koji su modulirani s PRN kodom i navigacijskom porukom, gdje je svaki signal iako na istoj frekvenciji jedinstven sam za sebe i određuje vrijeme koje proteklo između odašiljanja signala sa satelita i prijama signala unutar GPS prijamnika tj. pseudoudaljenost. Proces određivanja je sljedeći.

Slika 4. Proces korelacije primljenog i generiranog kodiranog signala

Izvor: https://gssc.esa.int/navipedia/index.php/GNSS Basic Observables

Unutar prijamnika postoje replike signala svih satelita koje se kad je primljen signal sa satelita počnu generirati s ciljem da prijamnik identificira koja je se to replika podudara tj. korelira najbolje s primljenim signalom.²¹ Kako primljeni signal u većini slučajeva nije u fazi jednakoj kao i generirane replike prijamnik pomiče generirane signale naprijed ili nazad kroz vrijeme dok ne dobije najvišu korelaciju. U trenutku kad je najviša korelacija postignuta između signala sa satelita i određene generirane replike, prijamnik identificira točno traženi satelit, stvara vezu (engl. *lock on*) i izračunava pseudoudaljenost.²² Međutim, ta pseudoudaljenost u većini slučajeva nije točna zbog neusklađenosti sata (engl. *clock offset*) tj. vremena prijamnika i GPS vremena i drugih

²¹ Carter, C, op.cit., p. 5.

²² Brčić, D., op.cit., p. 15.

parametara koje utječu na GPS signal . Unutar navigacijske poruke se nalaze informacije o GPS vremenu, položaju satelita u orbiti i ispravke određenih parametara te na temelju tih informacija prijamnik usklađuje svoje vrijeme s GPS vremenom i određuje pseudoudaljenost.²³ Pseudoudaljenost prikazana je sljedećim matematičkim izrazom.²⁴

$$\rho = r + c t_m + c \,\delta t \tag{1}$$

gdje je:

 ρ = pseudoudaljenost između prijamnika i satelita

r = stvarna udaljenost između satelita i prijamnika

c = brzina širenja signala kroz proctor (s)

 t_m = pogreška sata prijamnika tj. odstupanje od sistemskog GPS vremena (s)

 δt = pogreška mjerenja vremena širenja signala uslijed ostalih parametara (s)

Zbog opažanja više satelita istovremeno potrebno je prošli izraz (1) proširiti u trodimenzionalni pravokutni sustav.²⁵

$$\rho_i = \sqrt{((X_i - x)^2 + (Y_i - y)^2 + (Z_i - z)^2)} + c \times t_m + \delta t$$
(2)

gdje je:

 ρ_i = pseudoudaljenost *i*-tog satelita

- $X_i, Y_i, Z_i =$ položajne koordinate *i*-tog satelita u orbiti
- x, y, z, = koordinate korisničkog prijamnika
- c = brzina širenja signala kroz proctor (s)
- t_m = pogreška sata prijamnika tj. odstupanje od sistemskog GPS vremena (s)
- δt = pogreška mjerenja vremena širenja signala uslijed ostalih parametara (s)

²³ Carter, C, op.cit., p. 6.

²⁴ Brčić, D., op.cit., p. 16.

²⁵ Tahsin, M. Et all.: *Analysis of DOP and its Preciseness in GNSS Position Estimation*, International conference on electrical engineering and information communication technology (ICEEICT). IEEE, 2015., p. 2.

Slika 5. Proces određivanja procijenjenog položaja korisnika u prostoru i vremenu

Izvor: https://www.tallysman.com/gnss-positioning-techniques/

Kao što je vidljivo iz slike nakon što je prijamnik izračunao pseudoudaljenosti i koordinate svih satelita u vremenima kad su odaslali signale, određuje se procijenjeni položaj korisnika na zemlji kao koordinate kartezijevog sustava koje se transformiraju u geodetske koordinate sustava WGS-84 (engl. *World Geodetic System 1984* – WGS 84) geografske širine, geografske dužine i nadmorske visine.²⁶ Postoji razlika između procijenjenog položaja i pravog položaja korisnika. Ono što utječe na tu razliku je su određene pogreške koje se pojavljuju tijekom propagacije signala od trenutka kada je signal odaslan sa satelita pa sve do trenutka kada je primljen u antenu prijamnika.

²⁶ Dawoud, S., op.cit., p.4.

2.4. POGREŠKE KOJE SE POJAVLJUJU PRILIKOM ODREĐIVANJA POLOŽAJA

Cijeli GPS sustav podložan je određenim pogreškama koje na kraju utječu na propagaciju GPS signala kroz prostor. Te pogreške se dijele na korisničku razdiobu pogrešaka (engl. *User Equivalent Ranging Error* – UERE) i geometrijsku razdiobu točnosti (engl. *Geometric Dilution of Precision* – GDOP) odnosno ukupna pogreška prilikom mjerenja pseudoudaljenosti je izražena kao umnožak ove dvije pogreške.²⁷

2.4.1. Korisnička razdioba pogreške

Korisnička razdioba pogreške predstavlja skup pogrešaka koje izravno utječu na vrijeme propagacije GPS signala. Korisnička razdioba pogreške se dijeli na:²⁸

- Satelitsku komponentu pogreške
- Pogreška zbog prijenosnog medija
- Korisnička komponenta pogreške

Satelitska komponenta pogreške sastoji se od pogreške satelitskog sata gdje satelitski sat može biti neusklađen s GPS vremenom, također i relativistički učinci su uračunati u pogrešku zbog nejednakog proteka vremena satelitskog sata i korisničkog sata, pogreške efemerida satelita gdje procijenjeni položaj satelita od strane upravljačke stanice se razlikuje od pravog položaja i sklopovsko kašnjenje satelitske opreme.²⁹ Sve ove pogreške satelitske komponente su već unaprijed izračunate i nalaze se unutar navigacijske poruke.

Pogreške koje nastaju prilikom širenja signala kroz prijenosni medij se dijele na pogreške ionosferskog i troposferskog kašnjenja. Ionosfera predstavlja medij koji djeluje disperzivno na satelitski signal tj. dolazi do krivljenja ili loma satelitskog signala zbog slobodnih elektrona koji se nalaze unutar ionosfere.³⁰ Troposfera predstavlja donji sloj atmosfere koji zbog svoje temperature, relativne vlažnosti i tlaka utječe na brzinu širenja satelitskog signala.³¹

²⁷ Tahsin, M. Et all., op.cit., p.4.

²⁸ Karaim, M., Elsheikh, M. I Noureldin, A.:*Multifunctional Operation and Application of GPS*, Chapter 4: GNSS Error Sources, IntechOpen, 2018., p. 83.

²⁹ Sunehra, D.: *Estimation of Prominent Global Positioning System Measurement Errors for Gagan Applications*, European Scientific Journal, vol.9., No.15, 2013., p. 71-72.

³⁰ Dawoud, S., op.cit., p.4.

³¹ Brčić, D., op.cit., p. 18.

Korisnička komponenta pogreške sastoji se od pogreške korisničkog sata tj. neusklađenosti korisničkog sata s GPS vremenom, pogreške zbog šuma prijamnika tj. termalni šum antene, pojačala i kablova i pogreške višestrukih putova koje nastaju zbog odbijanja satelitskog signala od objekte koji se nalaze na putu između satelita i prijamnika.³²

2.4.2. Geometrijska razdioba točnosti

Geometrijska razdioba točnosti (engl. *Dilution of Precision* – DOP) predstavlja omjer točnosti određivanja položaja i izračunate pseudoudaljenosti tj. sveukupnu točnost prostornog i vremenskog pozicioniranja te je određen faktorom.³³ Nepovoljan prostorni raspored satelita rezultira povećanjem faktora geometrijske razdiobe točnosti. Položaj prijamnika je određen kao sjecište sfera čiji radijusi su jednaki izračunatim pseudoudaljenostima sa središtem u satelitu, međutim pseudoudaljenostima treba nadodati određenu greške koje se pojavljuju tijekom mjerenja.³⁴ Za određivanje položaja potrebno je minimalno četiri satelita od koja su tri za potrebna za određivanje položaja korisnika dok četvrti za određivanje vremena.

Slika 6. Utjecaj najpreciznije (a), povoljne (b) i nepovoljne (c) prostorne razdiobe satelita na određivanje položaja prijamnika.

Izvor: Karaim, M., Elsheikh, M. I Noureldin, A.:Multifunctional Operation and Application of GPS, Chapter 4: GNSS Error Sources, IntechOpen, 2018., p. 81.

Slika sadrži tri prikaza. Prikaz (a) prikazuje najpovoljniju situaciju prostorne razdiobe satelita u slučaju da nema pogreške mjerenja pseudoudaljenosti i položaj korisnika je određen točno u

³² Sunehra, D., op.cit., p. 72.

³³ Dawoud, S., op.cit., p. 5.

³⁴ Tahsin, M. Et all., op.cit., p. 1.

sjecištu sfera. Prikaz (b) prikazuje također najpovoljniju prostornu raspodjelu satelita s uračunatom pogreškom mjerenja. Prikaz (c) prikazuje nepovoljnu prostornu razdiobu satelita s uračunatom pogreškom mjerenja. Vidljivo je da prikazi b i c se razlikuju uvelike tj. područje neodređenosti položaja je veće kod prikaza (c) nego li je kod prikaza (b) što dokazuje da prostorna raspodjela satelita u odnosu na prijamnik uvelike utječe na određivanje položaja.

Geometrijska razdioba točnosti se može rastaviti na prostornu komponentu (engl. *Positional Dilution Of Precision* – PDOP) koje je vezana za određivanje položaja korisnika i vremensku komponentu (engl. *Time Dilution of Precision* – TDOP) koja je vezana za određivanje vremena.³⁵ Prostorna se dalje može rastaviti na horizontalnu komponentu (engl. *Horizontal Dilution of Precision* – HDOP) i vertikalnu komponentu (engl. *Vertical Dilution Of Precision* – VDOP).³⁶

³⁵ Carter, C, op.cit., p. 19.

³⁶ Karaim, M., Elsheikh, M. I Noureldin, A., op.cit. p. 83

3. SUNCE

Zvijezde u svemiru u ovisnosti o njihovoj promatranoj boji podijeljene su na klase i Sunce spada pod zvijezdu glavnog niza spektralne klase *G*.³⁷ Za razliku od ostalih zvijezda u svemiru Sunce je tipična zvijezda, niti pretopla ili prehladna niti prestara ili premlada.³⁸ Zemlja i ostali planeti unutar sunčevog sustava orbitiraju oko sunca zbog utjecaja sunčeve gravitacije i podložni su sunčevom dinamičnom utjecaju. Sunce je glavni pokretač svega unutar sunčevog sustava a posebno života na Zemlji.

Sunce kao najveće tijelo sunčevog sustava ima masu otprilike 330 000 puta veću od Zemljine ili $2 \times 10^{30} kg$ i čini 99% ukupne mase sunčevog sustava, površinska temperatura je približno 5800 kelvina i radius je $6.960 \times 10^8 m.^{39}$ Za razliku od Zemlje Sunce nema površinu ni jezgru čvrstog oblika nego cijelo Sunce je plinovitog sastava od kojega najvećem dijelom čini vodik s približno 74.4% i helij s približno 25% ukupne mase dok ostali plinovi poput ugljika, dušika, kisika i ostalih čine ostatak i sunce energiju stvara termo nuklearnom fuzijom.⁴⁰

Unutar Sunca zbog ogromne temperatura ništa ne može opstati u čvrstom ili tekućem obliku a većina atoma unutar Sunca je ionizirano što znači da unutar sunca postoji ogromna količina nabijenih čestica tj. elektrona i pozitivno nabijenih iona koji čine cijelo sunce kao električno nabijeno tijelo.⁴¹ Ionizirani plin se također naziva plazma. Zbog svog jakog magnetskog polja i površinskih aktivnosti koje te elektrone otpuštaju u svemir, Sunce ima ogroman utjecaj na svoju okolinu posebno na magnetska polja drugih planeta.

3.1. STRUKTURA SUNCA

Da bi se razumjelo kako Sunce stvara i emitira energiju u obliku elektromagnetskog zračenja na gotovo svim valnim duljinama, potrebno je poznavati procese unutar svakog pojedinog sloja Sunca. Sunce po strukturi se dijeli na unutarnje i vanjske slojeve. Unutarnje slojeve sunca čine

³⁷ Kane, R., P.: Geomagnetic Field Variations, Space Science Reviews, vol.18., No. 4, 1976., p. 431.

³⁸ Frankoi, A. et all.: Astronomy, OpenStax, 2016., p. 527.

³⁹ Stix, M.: *The Sun: An Introduction*, Second Edition, Springer-Verlag Berlin Heidelberg, 2002. P. 4.

⁴⁰Houghton, J. T., Rycroft, M. J., i Dessler A. J.: *Physics of the Space Environment*, University of Cambridge, Cambridge, United Kingdom, 1998., p. 211.

⁴¹ Frankoi, A. et all., op.cit., p. 531.

dijelovi poput sunčeve jezgre, zone zračenja i konvekcijska zona, dok vanjske slojeve Sunca čine dijelovi poput fotosfere, kromosfere i korone.⁴² Struktura sunca prikazana je na sljedećoj slici.

Slika 7. Struktura Sunca

Izvor: https://www.astroucionica.hr/zanimljivosti-o-suncu/

3.1.1. Unutrašnji slojevi Sunca

Unutrašnji slojevi Sunca i procesi mogu se definirati temeljem izmjerenih akustičnih frekvencija koje su pobuđene sunčevom konvekcijom.⁴³ Mjerenja se vrše na solarnim opservacijskim stanicama bolje poznatima kao GONG (engl. *Global Oscillation Network Group* – GONG) stanice koje su ravnomjerno raspoređene po Zemlji s ciljem pružanja podataka vezanih za unutrašnje slojeve Sunca.⁴⁴

Jezgra čini polovicu mase Sunca, zauzima ¼ polumjera Sunca i predstavlja područje unutar kojeg se vrše termo nuklearne reakcije tj. fuzija, gdje se zbog ekstremno visokih temperatura (15

⁴² Frankoi, A. et all., op.cit., p. 532.

⁴³ Schussler, M.: The Sun and Its Restless Magnetic Field, Lecture Notes in Physics, vol. 656., No.1, 2004., p. 1.

⁴⁴ Hill, f.: *The Global Oscillation Network Group Facility—An Exampleof Research to Operations in Space Weather*, Space Weather, vol. 16., No.10, 2018.

milijuna kelvina) i tlaka stvara helij cikličnim spajanjem četiri jezgre vodika.⁴⁵ Energija generirana termonuklearnom fuzijom se postepeno prenosi u obliku gama zračenja dalje kroz slojeve.

Zona zračenja nakon jezgre zauzima 45% polumjera Sunca a glavna funkcija zone je prijenos energije koja se generirana unutar jezgre prema vanjskim slojevima gdje unutar zone zračenja energija tj. gama zračenje ioniziranih atoma vodika i se prenosi u obliku fotona.⁴⁶ Na vanjskom rubu zone zračenja temperatura iznosi približno 2 milijuna kelvina.⁴⁷

Konvekcijska zona predstavlja zadnji unutrašnji sloj sunca koji zauzima preostali 30%. Kroz konvekcijski sloj zbog velikog pada temperature ionizirani plinovi tj. plazma ne može se prenositi dalje zračenjem nego se stvaraju konvekcijske ćelije tj. toplinski stupovi unutar koji se plazma prenosi do fotosfere u obliku mjehura gdje temperatura naglo pada na približno 5800 kelvina.⁴⁸ Tako ohlađena plazma nazad pada prema dnu konvekcijske zone i proces se ponovo ponavlja.

3.1.2. Vanjski slojevi Sunca

Vanjske ili površinske slojeve Sunca i njihove procese puno je lakše promatrati i izučavati za razliku od unutarnjih zbog njihove vidljivosti stoga postoje razni opservatoriji koji prate dinamične procese koji se pojavljuju na površini Sunca.

Fotosfera je sloj širine od par stotina kilometara i predstavlja prelazni dio sunčeve atmosfere gdje se plazma pojavljuje u obliku mjehura ili bolje poznatih granula koje prekrivaju cijelu površinu Sunca i uskih tamnih područja između granula gdje ohlađena plazma tone nazad prema unutrašnjosti sunca.⁴⁹ Zbog cijelog dinamičkog procesa granule imaju promjer oko 1000 *km* i vremenski traju između 5 i 10 minuta dok super granule mogu imati promjer od 35 000 *km* i vremensko trajanje od čak 24 sata.⁵⁰ Unutar fotosfere nastaju sunčeve pjege i sunčeve baklje.

Kromosfera je sloj širine od otprilike 3000 km u kojem gustoća okoline znatno opada u odnosu na fotosferu gdje ioniziranom plinu uz pomoć jakog magnetskog polja znatno raste

⁴⁵ Kane, R., P., op.cit., p. 431.

⁴⁶ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 211

⁴⁷ Schussler, M., op.cit., p. 3.

⁴⁸ Frankoi, A. et all., op.cit., p. 532.

⁴⁹ Schussler, M., op.cit., p. 4.

⁵⁰ Stix, M., op.cit., p. 248. i 267.

temperatura i u nekim slučajevima dolazi do izbačaja ioniziranog plina u obliku prominencija i sunčevih baklji.⁵¹ Temperature unutar kromosfere dostižu do 10 000 kelvina a ionizirani plin na putu do korona sloja dostigne temperaturu skoro milijun kelvina.

Korona predstavlja vanjski sloj sunčeve atmosfere temperature približno milijun kelvina, koja se proteže duboko u svemir. Sloj korone je usko povezan s magnetskim poljem sunca gdje ionizirani plin prati magnetske silnice Sunca. Uglavnom magnetske silnice spajaju magnetska područja suprotnih polova ali u slučaju gdje postoje magnetske silnice jednog pola ionizirani plin se izbacuje u međuplanetarni prostor u obliku sunčevog vjetra.⁵² Takva područja gdje se nalaze silnice jednog pola nazivaju se koronarne šupljine.

3.2. MAGNETSKO POLJE SUNCA

Magnetsko polje Sunca predstavlja vrlo složen mehanizam procesa koji se rasprostranjuje kroz veći dio sunčevih slojeva. Na većim udaljenostima od sunca magnetsko polje poprima oblik dipola međutim na površini Sunca razvijaju se mnogo kompleksniji procesi i mreže magnetskih tokova. Dinamo teorija se smatra kao glavni pokretač magnetskog polja Sunca gdje zbog velike razlike u temperaturama dolazi do diferencijalne rotacije slojeva, konvekcije plazme između zone zračenja i konvekcijske zone koja se zove zona preleta i električki provodljive plazme stvara magnetsko polje Sunca u obliku mreže tokova.⁵³ Stvaranje magnetskog polja definirano je indukcijskom jednadžbom:⁵⁴

$$\frac{\partial B}{\partial t} = \nabla \times (u \times B) + \eta_m \nabla^2 B \tag{3}$$

gdje je:

B = magnetsko polje

u = brzina

t = vrijeme

⁵¹ Kane, R., P., op.cit., p. 431.

⁵² Schussler, M., op.cit., p. 5.

⁵³ Ossendrijver, M.: *The Solar Dynamo*, The Astronomy and Astrophysics Review, vol. 11., No.4, 2003., p. 304.

⁵⁴ Stix, M., op.cit., p. 219.

 $\eta_m = magnetska difuznost$

Takvo magnetsko polje izlazi iz zone preleta i završava unutar sloja korone u obliku petlji a mjesta na površini gdje se krakovi petlje sijeku mogu predstavljati manje svijetle mrlje ili veće tamne mrlje bolje poznate kao sunčeve pjege a jakost magnetskog polja na površini Sunca iznosi 0,15 *T*.⁵⁵ Magnetska polja Sunca zbog iznimno visokog tlaka eruptiraju vertikalno gdje se energija plinova oslobađa u obliku topline i ono je glavni pokretač većine sunčevih površinskih aktivnosti.

3.2.1. Sunčev ciklus

Sunčeve pjege predstavljaju iznimno važnu komponentu aktivnosti magnetskog polja Sunca. Na temelju broja Sunčevih pjega na površini Sunca može se odrediti u kojem stupnju magnetske aktivnosti je Sunce. Znanstvenik Johann Rudolf Wolf je uveo izraz pomoću kojeg se može odrediti relativan broj Sunčevih pjega:⁵⁶

$$R = k \times (10g + n) \tag{4}$$

gdje je:

R = relativan broj Sunčevih pjega

n = broj pojedinačnih Sunčevih pjega na vidljivoj strani Sunca

g = broj skupina Sunčevih pjega

k = koeficijent osjetljivosti instrumenata i drugih parametara

Njihovo pojavljivanje na površini Sunca je periodično te imaju svoj minimum i maksimum. Zbog toga može se reći da Sunce ima svoj ciklus koji traje u prosijeku 11 godina.⁵⁷ Za vrijeme minimuma one se počnu pojavljivati na 30° iznad i ispod sunčevog ekvatora a tijekom ciklusa počnu postepeno spuštati prema ekvatoru. Sunčeve pjege pojavljuju se u skupinama gdje

⁵⁵ Solanski, S., K., Inhester, B. I Schussler, M.: *The solar magnetic field*, Rep. Prog. Phys., vol. 63., No.3, 2006., p. 568.

⁵⁶ Hathaway, D., H.: The Solar Cycle, Living Rev. Solar Phys., 12, 4, 2015. p. 10.

⁵⁷ Schussler, M., op.cit., p. 6.

magnetske silnice spajaju Sunčeve pjege različitih polariteta. Na sjevernoj i južnoj hemisferi Sunca polariteti takvih područja određeni su Haleovim zakonom:⁵⁸

- Magnetska orijentacija bipolarnih područja ostaje ista za svaku hemisferu tijekom 11-to godišnjeg ciklusa.
- Bipolarna magnetska područja imaju na sjevernoj i južnoj hemisferi imaju različitu orijentaciju.
- Magnetska orijentacija bipolarnih područja se mijenja svaki ciklus.

Stoga magnetska orijentacija ponavlja se svakih dva ciklusa tj. svakih 22 godine. Također tijekom ciklusa pojavljuje se određeno odstupanje u orijentaciji istok zapad za bipolarna područja gdje je kut γ između orijentacije i pravca istok zapad proporcionalan srednjoj heliografskoj širini λ za određeno bipolarno područje i to je opisano Joyovim zakonom: $\gamma \simeq 0.5 \times \lambda$. ⁵⁹ Dijagram leptira izvrsno opisuje magnetsku aktivnost Sunčevih ciklusa gdje su sunčeve pjege funkcija heliografske širine i vremena.

Izvor: Hathaway, D., H.: The Solar Cycle, Living Rev. Solar Phys., 12, 4, 2015. p. 18.

3.2.2. Ostale magnetske pojave

Magnetsko polje Sunca uz sunčeve pjege generira i druge pojave na svojoj površini poput prominencija, sunčevih baklji i koronarnog izbačaja mase. Svakoj pojavi može se dodijeliti intenzitet djelovanja na sunčevu okolinu. Dok sunčeve baklje i koronarni izbačaj mase predstavljaju ogromne erupcije tj. oslobađanje energije ioniziranog plina koje se šire daleko u

⁵⁸ Solanski, S., K., Inhester, B. I Schussler, M., op. cit., p. 574.

⁵⁹ Solanski, S., K., Inhester, B. I Schussler, M., op. cit., p. 574.

međuplanetarni prostor, prominencije predstavljaju također erupcije energije ali uglavnom vezane za površinu sunca.⁶⁰

Prominencije se pojavljuju u blizini sunčevih pjega i izdižu se u obliku oblaka od fotosfere pa sve do korone. Ionizirani plin unutar prominencije može dostići temperature do 10 000 K a gustoća plina je veća od gustoće okoline.⁶¹ Prominencije se dijele na mirne i eruptivne tj. aktivne, gdje mirne mogu trajati mjesecima dok eruptivne traju nekoliko sati ili dana. Prosječna duljina prominencije je 200 000 *km*, visina je 50 000 *km* i širine 5000 *km*.⁶²

Slika 9. Prominencija

Izvor: https://scied.ucar.edu/learning-zone/sun-space-weather/solar-prominence

Sunčeve baklje predstavljaju nagle erupcije unutar sunčeve atmosfere koje traju nekoliko minuta gdje zbog povezivanja dvaju suprotnih magnetskih polova dolazi do ogromnog oslobađanja energije u obliku topline, energetskih čestica i elektromagnetskog zračenja na gotovo svim valnim duljinama.⁶³ Ovakve nagle erupcije slično kao i prominencije uglavnom se pojavljuju u blizini sunčevih pjega gdje ionizirani plin zagrijava do 10 milijuna K.⁶⁴ Energija koja se ispušta za vrijeme najvećih erupcija je približno jednaka $10^{25}J$, dok za vrijeme manjih iznosi $10^{19}J$.⁶⁵ Prema intenzitetu djelovanja u području X zraka koje se povezuju sa smetnjama u zemljinoj atmosferi

⁶⁰ Frankoi, A. et all., op.cit., p. 544 – 547.

⁶¹ Frankoi, A. et all., op.cit., p. 545.

⁶² Stix, M., op.cit., p. 419.

⁶³ Schwenn, R.: Space Weather: The Solar Perspective, Living Rev. Solar Phys., vol.3., No.2, 2006. p. 21 – 30.

⁶⁴ Stix, M., op.cit., p. 432.

⁶⁵ Schwenn, R., op.cit., p. 22.

podijeljene su u kategorije gdje A i B kategoriju čine tipične sunčeve baklje normalnog intenziteta dok C, M i X kategorije predstavljaju sunčeve baklje povećanog intenziteta.⁶⁶

Slika 10. Sunčeve baklje (bijela područja unutar sunčeve atmosfere) Izvor: <u>https://www.nasa.gov/image-feature/solar-dynamics-ob</u>servatory-sees-m79-class-solar-flare

Koronarni izbačaj mase (engl. *Coronal Mass Ejection* – CME) skraćeno KIM, je događaj gdje uslijed eksplozije uzrokovane magnetskim povezivanjem kao i kod sunčevih baklji unutar sunčeve korone dolazi do naglog ispuštanja sunčeve plazme od kojih najvećim dijelom elektrona i protona u međuplanetarni prostor. Uslijed eksplozije dolazi do određenog udarnog vala na kojem elektroni i protoni putuje kroz međuplanetarni prostor.⁶⁷ Događaj je jako sličan kombinaciji prominencije i sunčevih baklji gdje je energija koju proizvede eksplozija toliko jaka da okolno magnetsko polje ne može zadržati dio energije.⁶⁸ KIM prilikom širenja kroz prostor poprima izgled žarulje koja ima svijetlu petlju kao vanjski rub koju prati taman prazan prostor i zatim iznimno svijetla jezgra kao središte, a brzina širenja na površini sunca iznosi nekoliko *km/s* s konstantnim

ubrzanjem do mogućih 2000 km/s prilikom naglih KIM-a ali uglavnom su brzine između 300 i 600

⁶⁶ Hathaway, D., H., op. cit., p. 25.

⁶⁷ Stix, M., op.cit., p. 437.

⁶⁸ Stix, M., op.cit., p. 436.

km/s.⁶⁹ Nastanak KIM-a također se povezuje uz područja oko sunčevih pjega, a samim tim i ovise o sunčevom ciklusu.

Slika 11. Koronarni izbačaj mase

Izvor: Schwenn, R.: Space Weather: The Solar Perspective, Living Rev. Solar Phys., vol.3., No.2, 2006. p. 40.

Sunčeve energetske čestice su sunčevi ioni, protoni i elektroni koji se ubrzavaju kroz interplanetarni prostor kao rezultat sunčevih erupcija. Događaju poput sunčevih energetskih čestica se mogu podijeliti impulzivne događaje koji su uzrokovani sunčevim bljeskovima i postupni događaji koji su uzrokovani interplanetarnim udarima koronarnog izbačaja mase.⁷⁰ Unutar impulzivnih događaja dominiraju uglavnom elektroni, obogaćeni izotop Helija (³*He*) i udio vrlo visoko ionizirani teških ioni. Unutar postepenih događaja dominiraju protoni i manji udio ioniziranih iona. Na udarnim valovima ovih erupcija zbog ubrzanja može se generirati energija od nekoliko *keV*-a do nekoliko *GeV*-a.⁷¹

Sunčev vjetar predstavlja kontinuirano radijalno emitiranje sunčeve plazme iz sunčeve korone u međuplanetarni prostor i stvara heliosferu.⁷² Ovisno o heliografskoj širini ovisit će brzina

⁶⁹ Schwenn, R., op.cit., p. 39 – 44.

⁷⁰ Klecker, B.: *Current understanding of SEP acceleration and propagation*, Journal of Physics: Conference Series, vol. 409., 2013. p. 2.

⁷¹ Schwenn, R., op.cit., p. 32-36.

⁷² Schwenn, R., op.cit., p. 10.

i gustoća sunčevog vjetra gdje na sunčevim polovima uglavnom prevladavaju otvorene magnetske linije jednog pola iz kojeg nastaju koronarne rupa koje generiraju brzi sunčev vjetar (400 - 800 *km/s*) male gustoće i područja oko sunčevog ekvatora i umjerenih širina gdje se nalaze zatvorene magnetske linije i koje generiraju turbulentniji međutim sporiji sunčev vjetar (250 - 400 *km/s*) veće gustoće.⁷³ Zbog iznimno visoke temperature i kinetičke energije plazma u sunčevoj koroni nadvladava gravitacijsku silu sunca i magnetsko polje.⁷⁴ Zbog dinamičnosti magnetskog polja unutar sunčeve korone intenzitet sunčevog vjetra će također ovisiti o sunčevom ciklusu.

Slika 12. Brzina sunčevog vjetra u odnosu na sunčev minimum (lijevi prikaz) i sunčev maksimum (desni prikaz)

Izvor: https://www.esa.int/ESA_Multimedia/Images/2008/06/Solar_wind_speeds_measured_by_Ulysses

3.3. UTJECAJ SUNČEVIH MAGNETSKIH AKTIVNOSTI NA SVEMIRSKO VRIJEME

Sunčeve magnetske aktivnosti su glavni pokretač elektromagnetskog zračenja na gotovo svim valnim duljinama. Magnetsko polje i nabijene energetske čestice Sunca se rasprostranjuju u međuplanetarni prostor i definiraju svemirsko vrijeme. Svemirsko vrijeme može se definirati kao utjecaj sunčevih aktivnosti na vremenske uvjete u svemiru a posebno u Zemljinom geoprostoru. Sunčev vjetar se može smatrati temeljnim nosiocem sunčevog magnetskog polja i sunčevih čestica u međuplanetarni prostor dok eruptivne pojave poput koronarnog izbačaja mase i sunčevih baklji predstavljaju periodične događaje koji imaju ogroman utjecaj na ubrzanje sunčevih čestica i

⁷³ Schussler, M., op.cit., p. 5.

⁷⁴ Frankoi, A. et all., op.cit., p. 537.
poremećaj međuplanetarnog magnetskog polja. Svemirsko vrijeme stoga uvelike ovisi o ovim promjenjivim uvjetima.

3.3.1. Sunčev vjetar kao stvaraoc međuplanetarnog magnetskog polja

Sunčev vjetar zbog kontinuiranog emitiranja ima važnu ulogu definiranja "vremenskih" uvjeta prostora koji okružuje Sunce. Zbog same veličine Sunca sunčevo magnetsko polje se prostire otprilike između 75 do 100 *AJ* (*Astronomska Jedinica*) u prostor svemira gdje jedna astronomska jedinica predstavlja prosječnu udaljenost između Sunca i Zemlje. Taj prostor koji je pod utjecajem sunčevog vjetra koji nosi magnetsko polje Sunca zove se heliosfera.⁷⁵

Sunčev vjetar radijalno izlazi iz koronarnih rupa na sunčevim polovima za vrijeme sunčevog minimuma u interplanetarni prostor i stvara međuplanetarno magnetsko polje (engl. *Interplanetary magnetic field* – IMF), skraćeno MMP. Međutim, rotacijom Sunca sunčev vjetar se ne kreće više radijalno nego djelomično se zavija u oblik Arhimedove spirale koja se također naziva Parkerova spirala i smanjuje mu se brzina.⁷⁶ Na udaljenostima od tri radijusa Sunca gdje više nema utjecaja zatvorenih magnetskih silnica u blizini sunčevog ekvatora i umjerenih širina dolazi do spajanja magnetskih silnica sunčevih polova različitih polariteta. U tom području zbog nagle promjene polariteta inducira se električna struja koja se širi kroz cijelu heliosferu i to se naziva heliosferni sloj struja (engl. *heliospheric current sheet* – HCS), skraćeno HSS.⁷⁷

Za vrijeme sunčevog minimuma os magnetskog dipola Sunca će biti skoro poravnata s osi rotacije Sunca i HSS će predstavljati produžetak magnetskog ekvatora sunca. Međutim, za vrijeme sunčevog maksimuma pojavljivat će se određen otklon između osi rotacije i osi magnetskog dipola zbog lokalne kvadripolne komponente magnetskog polja i HSS neće više biti poravnat s magnetskim ekvatorom nego će dolaziti do određenog iskrivljenja HSS-a prema gore ili dole u odnosu na magnetski ekvator.⁷⁸

⁷⁵ Solanski, S., K., Inhester, B. I Schussler, M., op. cit., p. 633.

⁷⁶ Russel, C., T.: *Solar Wind and Interplanetary Magnetic Field: A Tutorial, Space Weather, Volume 125, American Geophysical Union, 2001. p. 84.*

⁷⁷ Solanski, S., K., Inhester, B. I Schussler, M., op. cit., p. 633.

⁷⁸ Schwenn, R., op.cit., p. 14.

Slika 13. Heliosferni sloj struja 3D projekcija za vrijeme sunčevog maksimuma

Izvor: Schwenn, R.: Space Weather: The Solar Perspective, Living Rev. Solar Phys., vol.3., No.2, 2006. p. 14.

Zbog dinamičnosti cijeloga procesa i otklona HSS-a od magnetskog ekvatora Sunca MMP je podijeljeno u četiri sektora različitog redoslijeda polariteta. Sektori ko-rotiraju sa Suncem u periodu od 27 dana (8,8,8,3) a granice sektora su sjecišta između HSS-a i magnetskog ekvatora Sunca.⁷⁹ Zemlja se nalazi točno nalazi u području gdje dolazi do izmjene polariteta MMP-a. Važan utjecaj u cijelom sustavu imaju brz i spor sunčev vjetar tj. njihova interakciju koja djeluje na MMP. Iz sunčeve korone brzi i spori sunčev vjetar se šire radijalno i ko-rotiraju sa Suncem međutim na udaljenosti od 1 AJ od Sunca zbog razlike u brzini vjetrova i radijusu zakrivljenosti putanja dolazi do interakcije brzog i sporog sunčevog vjetra a to područje se zove korotirajuće područje interakcije skraćeno KPI (engl. *corotating interaction regions* – CIR).⁸⁰

Brzi sunčev vjetar (manje gustoće i većeg radijusa zakrivljenosti) dostiže sporiji sunčev vjetar (veće gustoće i manjeg radijusa zakrivljenosti) i pritom dolazi do stvaranja KPI područja. Unutar KPI područja događa se kompresija i defleksija plazma sunčevog vjetra koja utječe na magnetsko polje i dolazi do povećanja tlaka, gustoće i temperature.⁸¹ Na prednjoj strani KPI-a plazma sporog sunčevog vjetra zbog kompresije ubrzava i mijenja smjer prema rotaciji Sunca zbog

⁷⁹ Kane, R., P., op.cit., p. 432.

⁸⁰ Solanski, S., K., Inhester, B. I Schussler, M., op. cit., p. 637 - 638

⁸¹ Hathaway, D., H., op. cit., p. 15.

smjera gradijenta tlaka koji je poravnat sa silnicama magnetskog polja KPI-a. Na stražnjoj strani nalazi se brzi sunčev vjetar kojem se smjer otklanja u suprotnom smjeru rotacije Sunca.⁸²

Magnetsko polje se može rastaviti na radijalnu komponentu B_x i azimutalnu komponentu B_y koje su paralelne s ekliptikom i B_z komponentu koja je okomita na ekliptiku i može biti pozitivna sjevernog smjera ili negativnog južnog smjera. Magnetsko polje također prolazi kroz sličan proces unutar KPI-a gdje se dešava kompresija magnetskog polja tj. magnetskih silnica uzrokovanih interakcijom sunčevog vjetra. Kompresija uzrokuje povećanje jakosti i određen otklon magnetskog polja izvan ravnine ekliptike tj. povećanja okomite B_z komponente. To je jedan od mehanizama stvaranja komponente južne orijentacije MMP-a. Okomita komponenta je iznimno važna zbog utjecaja MMP-a na zemljino magnetsko polje.⁸³

3.3.2. Sunčeve baklje i koronarni izbačaj mase

Prilikom erupcije sunčeve baklje na površini sunca stvara se oblak plazme koji sadrži sunčeve energetske čestice. Takvi MMPulzivni događaji koji sadrže tokove elektrona se kreću po magnetskim silnicama MMP-a i kratkog su vremenskog trajanja od nekoliko sati. Da bi postojala opasnost za Zemlju sunčeve energetske čestice ubrzane od strane sunčeve baklje bi trebale se točno kretati po spiralnoj magnetskoj silnici MMP-a koja je u dodiru s magnetskim silnicama Zemljinog magnetskog polja.⁸⁴

Koronarni izbačaji mase prilikom erupcije sa Sunca u heliosferu odnosi dio magnetskog polja i sunčeve plazme. Takva kombinacija magnetskog polja i plazme u interplanetarnom prostoru se naziva interplanetarni koronarni izbačaj mase skraćeno IKIM.⁸⁵ IKIM prilikom kretanja kroz MMP stvara određene udarne valove gdje ti valovi komprimiraju, otklanjaju i zagrijavaju sunčev vjetar koji se nalazi ispred izbačene mase. Također plazma koja se nalazi između "oblaka" izbačaja plazme i udarnog vala se komprimira i stvara određena odstupanja smjera B_z komponente MMP-a stoga je to još jedan razlog odstupanja južne komponente MMP-a, a glavni razlog nastanka

⁸² Richardson, I., G.: *Energetic Particles and Corotating Interaction Regions in the Solar Wind*, Space Science Reviews, Vol. 111. no.3, 2004., p. 268 – 271.

⁸³ Hathaway, D., H., op. cit., p. 17.

⁸⁴ Schwenn, R., op.cit., p. 36.

⁸⁵ Klecker, B., op.cit., p. 1.

geomagnetskih oluja na Zemlji.⁸⁶ Za razliku od sunčevih baklji IKIM je karakteriziran kao postepen događaj u kojem dominantni protoni ne prate magnetske silnice MMP-a, nego prelaze preko silnica i dolazi do kontinuiranog ubrzanja čestica. Prilikom kretanja IKIM-a kroz prostor cijelo vrijeme se generiraju nove energetske čestice i to može trajati danima za razliku od impulzivnih događaja.⁸⁷

 ⁸⁶ Schwenn, R., op.cit., p. 47.
 ⁸⁷ Klecker, B., op.cit., p. 6 – 7.

4. ZEMLJA

Zemlja predstavlja najveći i najgušći unutrašnji planet Sunčevog sustava, a po redoslijedu udaljenosti od Sunca je treći i sama udaljenost je procijenjena na otprilike 149 milijuna kilometara ili 1 *AJ*. Po obliku Zemlja poprima oblik pravilne sfere, međutim u stvarnosti ona je spljoštena na polovima i radijus ekvatora je veći od radijusa polova za otprilike 20 *km*. Uzimajući u obzir vodene površine koje zauzimaju 71% površine i njihovo premještanje zbog rotacije te određene kontinentalne pomake tektonskih ploča (nekoliko *cm* godišnje) s ciljem što točnijeg određivanja oblika Zemlja je karakterizirana kao geoid.⁸⁸ Kao i svaki planet, Zemlja je podijeljena na određene slojeve i atmosferu koja ga okružuje.

Vanjski sloj Zemlje ili kora ima debljinu 30 km na kontinentalnom dijelu i 5 km debljine ispod oceana. Ispod vanjske kore nalazi se Mohorovičićev diskontinuitet koji predstavlja granicu između vanjske kore i plašta. Plašt ili omotač je sloj dubok otprilike 2900 *km*, a podijeljen je u vanjski plašt dubine 400 *km* unutar kojeg se nalaze kruti elementi poput perioditnih stijena, tranzitnog sloja od 400 - 1000 *km* dubine i unutarnjeg plašta od 1000 – 2900 *km* dubine, unutar kojeg zbog visokog tlaka i temperature stijene prelaze u tekuće stanje. Nadalje, slijedi jezgra s vanjskim tekućim dijelom na dubini između 2900 - 5130 *km* koja se sastoji od taljenog željeza i nikla te unutrašnja kruta jezgra radijusa 1250 *km*.⁸⁹

Sastav atmosfere je podijeljen na: dušik ($N_2 \sim 78\%$), kisik ($O_2 \sim 21\%$), argon($Ar \sim 0.9\%$), ugljikov dioksid ($CO_2 \sim 0.033\%$) i ostale plinove koji čine manje od 1%.⁹⁰ Zemljina atmosfera iako na prvi pogled izgleda kao jedinstvena cjelina sastoji se od niza slojeva čije se karakteristike poput temperature, tlaka, sastava atoma i gustoće slobodnih elektrona razlikuju jednih od drugih. Podjela atmosferskih slojeva po visini: troposfera (min.8 – max.10 *km*), stratosfera (min.18 - max.55 *km*), mezosfera (50 - 100 *km*), termosfera (90 - 400 *km*) i heliosfera (500 – 700 *km*), egzosfera (iznad 700 *km*) i posljednja iznimno važna magnetosfera unutar koje se odvijaj interakcija magnetskog polja zemlje i sunčevog vjetra.⁹¹

⁸⁸ Kane, R., P., op.cit., p. 415.

⁸⁹ McDonough, W., F.: The Composition of the Earth, Chemical Geology, vol.120., 1995. p. 226.

⁹⁰ Kane, R., P., op.cit., p. 418.

⁹¹ Hargreaves, J.K.: *The solar-terrestrial environment*, Cambridge University Press, University of Cambridge, Cambridge, United Kingdom, 1992., p. 98.

4.1. GEOMAGNETSKO POLJE

Geomagnetsko polje se može opisati kao magnetski dipol s južnim magnetskim polom koji se nalazi na sjevernoj polutci (79° Sjeverno, 70° Zapadno) i sjevernim magnetskim polom koji se nalazi na južnoj polutci (79° Južno, 70° Istočno).⁹² Po koordinatama polova magnetskog polja, vidljivo je da postoji odstupanje u odnosu na Zemaljske polove, stoga os dipola je nagnuta za 11.3° u odnosu na os rotacije Zemlje.⁹³

Nastanak geomagnetskog polja uvjetovan je visokom temperaturom i tlakom u jezgri gdje glavni element željezo se tali i izdiže se u obliku mjehura prema vanjskim dijelovima jezgre gdje dolazi do hlađenja željeza. Zatim ohlađeno željezo "tone" nazad prema središnjem sloju jezgre gdje cijeli proces se naziva termalna konvekcija. Također, zbog rotacije Zemlje uslijed koje nastaje Coriolisova sila koje putanju željeza u termalnoj konvekciji savija poput spiralne opruge. Zbog svoje električne vodljivosti i određenog gibanja između slojeva različitih gustoća inducira se električna struja koja stvara magnetsko polje zemlje.⁹⁴ Magnetske silnice zemljinog dipola izlaze iz južnog magnetskog pola i kreću se prema sjevernom magnetskom polu.

Geomagnetsko polje također je podložno vremenskim promjenama polja u obliku reverzibilnosti magnetskog polja i sekularne varijacije. Reverzibilnost geomagnetskog polja tj. izmjena polariteta se dešava u periodima od 240 000 godina međutim zadnje promjena polariteta je zabilježena prije 785 000 godina, dok sekularne varijacije predstavljaju određeno kretanje magnetskog polja gdje magnetski polovi putuju prema zapadu u stopi od 0.05° godišnje.⁹⁵

Jakost geomagnetskog polja razlikovat će se između različitih područja na Zemlji gdje na ekvatoru jakost polja je manja u odnosu na polove. Područja poput Južne Amerike će imati jakost magnetskog polja otprilike 25 000 nT, a Australija jakost polja je približno 40 000 nT.⁹⁶ Sveukupno geomagnetsko polje predstavlja zbroj dipolne i nedipolne komponente (kvadripolne, oktopolne itd.) međutim najvećim dijelom se promatra dipolna komponenta jer ima najveći utjecaj te na temelju nje stvoren je geomagnetski koordinatni sustav.⁹⁷

⁹² Hargreaves, J.K., op.cit., p. 150.

⁹³ Olson, P., Amit, H.: Changes in Earth's dipole, The Science of Nature, vol.93., No.11, December. 2006. p. 522.

⁹⁴ Glatzmaier, G., A., Olson, P.: Probing the Geodynamo, Scientific American, vol.292., No.4, 2005., p. 52.

⁹⁵ Olson, P., Amit, H., op.cit., p. 528.

⁹⁶ Kane, R., P., op.cit., p. 417.

⁹⁷ Campbell, W., H.:*Introduction to Magnetic Fields: Second Edition*, Cambridge University Press, University of Cambridge, Cambridge, United Kingdom, 2003. p. 3.

Jakost geomagnetskog polja je određenim vektorom F geomagnetskog polja. Koordinate vektora F magnetskog polja određene su od strane tri koordinate pravokutnog koordinatnog sustava (X, Y, Z), jedne vodoravne (H) komponente polja, kuta deklinacije (D) i kuta inklinacije (I).⁹⁸ S ciljem što kvalitetnijeg prikaza podataka jakosti geomagnetskog polja na visokim širinama napravljena je standardizacija gdje komponente geomagnetskog koordinatnog sustava čine ukupni vektor F:⁹⁹

$$B_{\chi} = -X, \ B_{\gamma} = -Y, \ B_{Z} = -Z,$$
 (5)

 B_x , B_y , B_z predstavljaju komponente jakosti geomagnetskog polja u sjevernom, istočnom i vertikalnom smjeru (južno). Komponente jakosti geomagnetskog polja su ključne za određivanje stanja svemirskog vremena, a vrijednosti se prikupljaju unutar magnetskih opservatorija.

Slika 14. Komponente geomagnetskog polja

Izvor: Campbell, W., H.: Introduction to Magnetic Fields: Second Edition, Cambridge University Press, University of Cambridge, Cambridge, United Kingdom, 2003. p. 5.

⁹⁸ Campbell, W., H., op.cit., p. 5-6.

⁹⁹ Brčić, D., op.cit., p. 43.

4.2. MAGNETOSFERA

Magnetosfera predstavlja vanjsku granicu geomagnetskog polja koja služi kao štit zemlje od utjecaja visokoenergetskih čestica sunčevog vjetra. Unutar magnetosfere se nalaze jako magnetsko polje, koje je pod konstantnim utjecajem sunčevih aktivnosti primarno sunčevog vjetra, a struktura je definirana dinamičnom interakcijom između geomagnetskog polja i međuplanetarnog magnetskog polja. Glavna karakteristika magnetosfere je da sadrži nabijene čestice poput iona i elektrona gdje pri dovoljnoj gustoći oni prelaze u plazmu. Poremećaji geomagnetskog polja nastali zbog utjecaja sunčevih aktivnosti unutar magnetosfere potiču gibanje nabijenih čestica koje pritom generiraju određene struje i gibanje plazme unutar magnetosfere.¹⁰⁰

MMP iako je glavni faktor definiranja geomagnetskog polja po snazi je mnogo slabiji od geomagnetskog polja i magnetske silnice MMP-a se odbijaju i skreću oko magnetosfere formirajući geomagnetsku šupljinu koja je definirana unutarnjim geomagnetskim tlakom i vanjskim dinamičnim tlakom sunčevog vjetra.¹⁰¹ Sunčev vjetar stvara određena naprezanja na magnetosferu gdje se ta naprezanja mogu rastaviti na normalna naprezanja i tangencijalna naprezanja. Normalna naprezanja djeluje na sam oblik i veličinu magnetosfere, dok tangencijalno naprezanje definira koliko će energije prodrijeti u magnetosferu na temelju prespajanja MMP-a i geomagnetskog polja.¹⁰²

4.2.1. Struktura magnetosfere

U slučaju da nema utjecaja sunčevog vjetra magnetosfera bi imala oblik magnetskog dipola, međutim zbog utjecaja sunčevog vjetra, magnetosfera je stlačena na dnevnoj strani (engl. *dayside*) i izdužena na noćnoj strani (engl. *nightside*). Sunčev vjetar koji se kreće supersoničnim brzinama nailazi na magnetosferu gdje dolazi do smanjivanja brzine na subsonične brzine, tlačenja i zagrijavanja sunčevog vjetra. To područje gdje se tlači sunčev vjetar se naziva udarni val (engl. *bow shock*) i nalazi se na udaljenosti od otprilike 10-11 R_Z (R_Z – zemljin radijus 6370 km) u periodu mirnog svemirskog vremena.¹⁰³ Međutim jedan dio sunčevog vjetra uspije prodrijeti kroz

¹⁰⁰ Brovsky, J., E., Valdivia, J.,A.: *The Earth's Magnetosphere*, A Systems Science Overview and Assessment, Surveys in Geophysics, 2018., p. 819.

¹⁰¹ Hargreaves, J.K., op.cit., p. 152.

¹⁰² Bothmer, V. i Daglis, I., A.: *Space Weather – Physics and Effects*, Praxis Publishing Ltd, Chichester, United Kingdom, 2007. p. 103.

¹⁰³ Brovsky, J., E., Valdivia, J., A., op.cit., p. 821.

udarni val i nailazi na područje magnetskog omotača (engl. *magnetosheath*) gdje dolazi do dodatnog usporavanja i zagrijavanja plazme.¹⁰⁴ Iza magnetskog omotača slijedi granični sloj magnetosfere (engl. *magnetopause*) gdje na dnevnoj strani udaljenost je približno 10 R_Z , a tlak magnetosferskog magnetskog polja i dinamični tlak sunčevog vjetra su u ravnoteži. U slučaju da se poveća intenzitet sunčevog vjetra granica se povlači bliže prema Zemlji.¹⁰⁵ Dipolarna regija u magnetosferi predstavlja područje plazmosfere (engl. *plasmasphere*) unutar koje se nalazi hladna plazma (H^+ , He^+ i O^+) koja potječe iz područja ionosfere.¹⁰⁶

U području noćne strane magnetosfere zbog utjecaja sunčevog vjetra se nalazi izduženi magnetski rep (engl. *magnetic tail*) koji se proteže nekoliko stotina R_Z -a u kojem je pohranjena energija i zagrijana plazma sunčevog vjetra koja se za vrijeme magnetskih nestabilnosti oslobađa.¹⁰⁷ Magnetski rep se sastoji od sjevernog i južnog dijela (engl. *tail lobe*) koji se jednim krajem spajaju s magnetskim polovima, a drugim krajem s MMP-om. Sjeverni dio ima magnetsko polje usmjereno prema Zemlji dok magnetsko polje južnog dijela je usmjereno od Zemlje. Na udaljenosti od otprilike 20 R_Z -a ne primjećuje se preveliko dipolno magnetsko polje, međutim iznad te udaljenosti dva dijela postaju skoro anti-paralelna s gotovo konstantnim intenzitetom magnetskog polja (20 *nT*). Zbog dipolnog magnetskog polja između sjevernog i južnog dijela stvara se neutralni sloj plazme (engl. *plasma sheet*) unutar kojeg se zatvaraju magnetske silnice i prevladava slabo magnetsko polje kroz koje protječe struja neutralnog sloja (engl. *cross-tail current sheet*). Međutim struja neutralnog sloja može ponekad biti toliko intenzivna tijekom vremena povećanih magnetskih aktivnosti u odnosu na slabo magnetsko polje neutralnog sloja plazme prilikom kojeg su moguća stvaranja brzih tokova plazme, magnetskog prespajanja (engl. *neutal point*) i velikog poremećaja magnetskog polja.¹⁰⁸

Auroralna zona predstavlja prstenasta područja sjevernog i južnog magnetskog pola gdje se nalaze otvorene magnetske silnice i gdje se pojavljuje spektakularna polarna svjetlost ili aurora. Područja otvorenih magnetskih silnica imaju izgled lijevka (engl. *cusp*) i direktno su magnetski

¹⁰⁴ Hargreaves, J.K., op.cit., p. 154-155.

¹⁰⁵ Obara, T.: *The Magnetosphere, Formation of the Magnetosphere and Magnetospheric Plasma Regime*, Journal of the Communications Research Laboratory, vol.49., No.3, 2002., p. 62.

¹⁰⁶ Brovsky, J., E., Valdivia, J.,A., op.cit., p. 859.

¹⁰⁷ Brovsky, J., E., Valdivia, J., A., op.cit., p. 822.

¹⁰⁸ Pulkkinen, T.: Space Weather: Terrestrial Perspective, Living Rev. Solar Phys., vol.4, No.1, 2007., p. 9.

povezana s MMP-om iz magnetskog repa.¹⁰⁹ Polarna svjetlost je generirana poremećajima unutar gornje atmosfere atomi i molekule atmosfere se sudaraju s plazmom iz neutralnog sloja plazme.¹¹⁰

Slika 15. Struktura magnetosfere

Izvor: <u>https://www.researchgate.net/figure/An-illustration-of-the-Earths-magnetosphere-the-region-of-space-</u> dominated-by-the fig6 261874512

4.2.2. Magnetosferska električna polja

Magnetosferska električna polja se dijele na konvekcijska polja koja su uzrokovana djelovanjem sunčevog vjetra na magnetosferu i korotacijska polja koja su posljedica zemljine rotacije. Ova električna polja imaju izniman učinak na protok plazme unutar magnetosfere te zbog njihovog djelovanja stvara se $E \times B$ drift.¹¹¹

Konvekcijsko električno polje nastaje u slučaju kada je MMP- južne orijentacije, prilikom čega dolazi do magnetskog prespajanja MMP-a i geomagnetskog polja. Prilikom magnetskog prespajanja dolazi do otvaranja geomagnetskih silnica i probijanja sunčevog vjetra i MMP-a unutar geomagnetskog polja. Sunčev vjetar nosi otvorene magnetske silnice preko auroralne zone sve do

¹⁰⁹ Obara, T., op.cit., p. 64.

¹¹⁰ Pulkkinen, T., op.cit., p.12.

¹¹¹ Caggiano J. I Paty C.S.: Analysis of $E \times B$ drifts in Earth's magnetosphere during geomagnetic reversals: potential consequences for plasmasphere behavior and stability, University of Oregon, Department of Earth Sciences, 2022., p. 5.

područja prespajanja na magnetskom repu i pritom pokreče magnetosfersku konvekciju. Električno polje koje je generirao sunčev vjetar $E_c = -u_c \times B (-u_c - brzina magnetskog toka, B - magnetsko polje)$ ima orijentaciju od zore prema sumraku i kreće se duž otvorenih magnetskih silnica sve do polarnih lijevaka gdje dolazi do nastanka $E \times B$ drift-a.¹¹²

Ko-rotacijska električna polja nastaju zbog rotacije Zemlje, prilikom čega neutralne energetske čestice koje se nalaze unutar atmosfere, se sudaraju s nabijenim energetskim česticama i stvara se određeno trenje koje skupa s silnicama magnetskog polja stvaraju ko-rotacijsko $E_{CR} =$ $-(\Omega \times r) \times B$ električno polje radijalnog usmjerenja prema van Ω - brzina rotacije Zemlje).¹¹³

4.2.3. Magnetosferski sustav struja

Električki nabijene čestice koje se gibaju unutar magnetosfere stvaraju određene struje koje generiraju magnetska polja. Magnetosfera se sastoji od četiri sustava struja: struja magnetopauze (Chapman-Ferraro struja), struja neutralnog sloja (struja magnetskog repa), prstenasta struja i struja magnetskih silnica (Birkelandovea struja).¹¹⁴

Struja magnetopauze (engl. *magnetopause current*) stvara se na granici između MMP-a i geomagnetskog polja. Interakcijom između Sunčevog vjetra i geomagnetskog polja unutar magnetopauze otklanja se smjer gibanja plazme. Protoni i elektroni se počinju gibati radijalno u suprotnim smjerovima iz dnevne strane u noćnu stranu te ulaze u polarne lijevke. Ovakvo razdvajanje čestica generira struju magnetopauze.¹¹⁵

Struja neutralnog sloja se stvara u području neutralnog sloja plazme na udaljenosti od 6,6 R_Z –a, gdje se stvaraju dva toka, jedan iznad i jedan ispod plazme. Tokovi struja neutralnog sloja cirkularno kruže u obliku grčkog slova *theta* (θ) i tok koji je iznad ima smjer prema Zemlji, a tok koji je ispod ima smjer suprotnog od Zemlje. Struja neutralnog sloja predstavlja struju magnetosfere u produžetku magnetskog repa koja je generirana isto kao i struja magnetopauze.¹¹⁶

¹¹² Houghton, J. T., Rycroft, M. J., i Dessler A. J.: Physics of the Space Environment, University of Cambridge,

Cambridge, United Kingdom, 1998., p. 300.

¹¹³ Caggiano J. I Paty C.S., op.cit., p. 5.

¹¹⁴ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 286.

¹¹⁵ Ganushkina, N., Y., Liemohn, M., W., i Dubyagin, S.: *Current Systems in the Earth's Magnetosphere*, Reviews of Geophysics, vol. 56., 2018., p. 313.

¹¹⁶ Ganushklna, N., Y., Liemohn, M., W., i Dubyagin, S., op.cit., p. 314.

Slika 16. Magnetosferski sustav struja

Izvor: Pulkkinen, T.: Space Weather: Terrestrial Perspective, Living Rev. Solar Phys.,vol.4, No.1, 2007., p. 11.

Prstenasta struja (engl. *ring current*) zauzima pojas od 3-6 R_Z –a, unutar koje se nalaze nabijeni ioni i elektroni (H^+ *i* O^+ , *energija* 10 – 200 keV – *a*) koji se gibaju po zatvorenim magnetskim silnicama.¹¹⁷ Sam intenzitet struja ovisit će o geomagnetskoj aktivnosti, gdje prilikom pojačane geomagnetske aktivnosti stvara se određeno ispuštanje iona ionosfere u područje magnetosfere. Sastav prstenaste struje se mijenja i pretežno vladaju ioni O^+ i manjim dijelom He^+ . Struja opada procesom izmjene naboja i sudara s česticama exosfere.¹¹⁸

Struje magnetskih silnica (engl. *field-aligned current*) ili Birkelanndove struje povezuju ionosferu i magnetosferu na polarnim ovalima. Struje su podijeljene u područje 1 koje se nalazi na auroralnim područjima gdje struje ulaze u ionosferu, te su povezane sa silnicama magnetskog repa i područje 2 gdje struje izlaze iz ionosfere i povezane su sa silnicama magnetskog ekvatora. Struje magnetskih silnica imaju veoma važnu ulogu u procesu prijenosa energije Sunčevog vjetra.¹¹⁹

¹¹⁷ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 289.

¹¹⁸ Pulkkinen, T., op.cit., p.13.

¹¹⁹ Ganushklna, N., Y., Liemohn, M., W., i Dubyagin, S., op.cit., p. 315.

4.2.4. Magnetosferska plazma

Plazma u magnetosferi ima dva izvora. Prvi izvor je plazma sunčevog vjetra koja se uglavnom sastoji od iona H^+ , He^{++} i elektrona te drugi ionosferski izvor koji se primarno sastoju od H^+ , He^+ i O^+ iona i elektrona¹²⁰.

Plazma sunčevog vjetra ulazi u magnetosferu zbog magnetskog prespajanja silnica suprotnih orijentacija geomagnetskog polja i MMP-a. U slučaju kad je MMP južne magnetske orijentacije zbog magnetskog prespajanja silnice geomagnetskog polja se otvaraju, i sunčev vjetar odnosi te silnice prema magnetskom repu preko polarnih ovala, gdje na udaljenosti od otprilike 100 – $200 R_Z$ –a dolazi do procesa zatvaranja magnetskih silnica kvazistatičnim prespajanjem.¹²¹ Prilikom zatvaranja silnica velika energija se oslobađa te se ubrzana plazma preko struje neutralnog sloja giba prema Zemlji u jednom toku, a u drugom toku se plazma giba od Zemlje. U slučaju kada je MMP polje sjeverne orijentacije magnetsko prespajanje se dešava na magnetskim polovima, gdje je plazma nošena strujama magnetskih silnica prema magnetskom repu i magnetskom ekvatoru. Stoga unos plazme ovisit će o orijentaciji MMP-a, jer kada je MMP južne orijentacije veći će biti unos plazme zbog većeg područja prespajanja magnetskih silnica (cijela dnevna strana magnetopauze)¹²²

Na 80 km nadmorske visine sunčevim ultraljubičastim zračenjem ioniziraju se plinovi atmosfere i pritom se stvara ionosfera. Električno polje sunčevog vjetra pokreće konvekciju plazme unutar ionosfere gdje se stvaraju struje magnetskih silnica i mlazovi koji izbacuju ionosfersku plazmu u područje magnetosferske plazmasfere. Unutar plazmasfere ionosferska plazma zbog utjecaja ko-rotacijskog električnog polja i međudjelovanja sunčevog vjetra stvara magnetopauzu. Na unutrašnjoj granici magnetopauze zarobljena plazma rotira oko Zemlje, dok s vanjske strane se gubi u sunčevom vjetru.¹²³

Na unutrašnjem dijelu magnetopauze stvaraju se radijacijski pojasi ili Van Allenovi pojasi unutar kojih visokoenergetske nabijene čestice (uglavnom protoni, elektroni i poneki teški ioni

¹²⁰ Brovsky, J., E., Valdivia, J., A., op.cit., p. 824.

¹²¹ Pulkkinen, T., op.cit., p.13.

¹²² Bothmer, V. i Daglis, I., A., op.cit., p. 116-117.

¹²³ Pulkkinen, T., op.cit., p.12.

poput željeza) rotiraju u zarobljenoj putanji oko Zemlje. Van Allenovi pojasi zauzimaju pojas širine od $1.2 - 7 R_Z$ –a i podijeljeni su na unutrašnji i vanjski pojas. Unutrašnji pojas širine 1.2-3 R_Z –a uglavnom sadrži protone i elektrone nastale prilikom sudara kozmičkih zraka sa Zemljinom atmosferom i unutar kojeg se smatra da prevladava relativno stabilna populacija protona, koja je podložna povremenim perturbacijama u slučaju geomagnetskih oluja.¹²⁴ Vanjski pojas širine 3-7 R_Z –a uglavnom sadrži elektrone, stoga se i naziva elektronski radijacijski pojas. Plazma koja sadrži elektrone vanjskog pojasa (od nekoliko stotina *keV*-a do nekoliko *Mev*-a) je uglavnom generirana geomagnetskim olujama gdje se magnetskim prespajanjem u magnetskom repu oslobađa energija uslijed koje se stvara magnetosferska konvekcija koja ubrzava plazmu prema vanjskom radijacijskom pojasu.¹²⁵

4.3. OSNOVNE ZNAČAJKE I PROCES FORMIRANJA IONOSFERE

Ionosfera je sloj gornje atmosfere koja se proteže između $60 - 2000 \ km$ nadmorske visine te sadrži plazmu slobodnih elektrona i električki nabijenih čestice (atoma i molekula).¹²⁶ Tri sastavne atmosferske čestice ionosfere su N_2 , O_2 i O na kojima se vrši proces ionizacije.¹²⁷ Ionizacija je proces gdje Sunčevo elektromagnetsko zračenje primarno UV (engl. *Ultra Violet* – UV), EUV (engl. Extreme Ultra Violet – EUV) i X zrake uzrokuju izbijanje elektroma iz kružne putanje oko atoma. Prilikom kojeg elektron koji je pod utjecajem protona elektromagnetskog zračenja dobiva određenu kinetičku energiju, koja je u jednom trenutku jača od energije koja povezuje elektron za atom ili molekulu te dolazi do razdvajanja elektrona i pozitivno nabijenog iona.¹²⁸ Zbog nadmorske visine na kojoj se nalaze i slabog atmosferskog tlaka, elektroni i pozitivno nabijeni ioni slobodno se gibaju do trenutka rekombinacije (engl. *recombination*) kada slobodni elektron naiđe na pozitivno nabijeni ion i stvori neutralni atom, a ponekad i negativno nabijeni ion.¹²⁹

Ionizacijskim i fotokemijskim procesima koje generira sunčevo elektromagnetsko zračenje na svim valnim duljinama stvaraju se određeni slojevi unutar ionosfere zbog različitog sastava

¹²⁴ Bothmer, V. i Daglis, I., A., op.cit., p. 154-155.

¹²⁵ Brovsky, J., E., Valdivia, J., A., op.cit., p. 827-828.

¹²⁶ Chapagain, N. P.: Ionosphere and its Influence in Communication Systems, Symmetry, vol. 10. 2016., p. 1.

¹²⁷ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 177.

¹²⁸ Chapagain, N. P., op.cit., p. 2-3.

¹²⁹ De Canck, M. H.:Ionosphere, *The Earth's Atmosphere*, antenneX, No. 63, 2002., p. 3.

atmosferskih čestica na različitim nadmorskim visinama. ¹³⁰ Naravno, intenziteti procesa ovisit će o dobu dana, godišnjem dobu i sunčevoj aktivnosti.

Grafikon 1. Prikaz profila slojeva ionosfere (lijevo) i atmosferskog sastava na dnevnoj strani(desno)

Izvor: Houghton, J. T., Rycroft, M. J., i Dessler A. J.: Physics of the Space Environment, University of Cambridge, Cambridge, United Kingdom, 1998., p. 177-178.

Sunčevo elektromagnetsko zračenje prodire kroz gornje slojeve ionosfere, međutim zbog manje koncentracije atmosferskih čestica proces ionizacije nije toliko vidljiv. Prodiranjem elektromagnetskih zraka na područje veće koncentracije atmosferskih čestica na nadmorskoj visini između 140 i 350 km, proces ionizacije je značajan i formira se F sloj ionosfere.¹³¹

F sloj predstavlja sloj s najvećom gustoćom plazme $(10^6 cm^{-3})$ i dijeli se na niži F_1 sloj i viši F_2 sloj na dnevnoj strani, a na noćnoj strani zbog manjka ionizacije F_2 sloj nestaje. Unutar *F* sloj-a zbog procesa fotoionizacije UV-e i EUV-e zrakama dominiraju najviše O^+ i iznimno je važan za propagaciju radio valova.¹³² Fotoionizacija atoma kisika je opisana sljedećim izrazom:¹³³

$$0 + hv \to 0^+ + e \tag{5}$$

¹³⁰ Brčić, D., op.cit., p. 23.

¹³¹ Chapagain, N. P., op.cit., p. 2.

¹³² De Canck, M. H., op.cit., p. 4.

¹³³ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 184.

Gdje je:

0 = atom kisika

hv = proton elektromagnetskog UV I EUV-e zračenja

 $O^+ = ion kisika$

e = slobodni elektron

E sloj se formira daljnjim probijanjem elektromagnetskog zračenja primarno X zrakama na nadmorskoj visini između 90 i 150 km. Unutar *E* sloja također se nalazi značajna koncentracija plazme ($10^5 \, cm^{-3}$) unutar koje dominantno prevladavaju ioni N_2^+ , O_2^+ i O^+ koji pod utjecajem ionizacije Sunčevih X zraka se transformiraju u ione NO^+ i O_2^+ .¹³⁴ Proces ionizacije je opisan sljedećim izrazom:¹³⁵

 $0^+ + 0_2 \rightarrow 0_2^+ + 0$

$$N_{2}^{+} + 0 \rightarrow NO^{+} + N$$

$$N_{2}^{+} + 0 \rightarrow O^{+} + N_{2}$$

$$(6)$$

$$O^{+} + N_{2} \rightarrow NO^{+} + N$$

Gdje je:

0 = atom kisika

 $O^+ = ion kisika$

 O_2^+ = ion molekule kisika

N = atom dušika

 N_2 = molekula dušika

¹³⁴ Chapagain, N. P., op.cit., p. 2.

¹³⁵ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 184.

 N_2^+ = ion molekule dušika NO^+ = ion dušikovog dioksida

D sloj predstavlja najniži sloj ionosfere na nadmorskoj visini između 60 i 100 *km* unutar kojega dopiru elektromagnetske X zrake na gornjem rubu sloja, Lyman–alpha zračenje pri srednjem dijelu sloja i galaktičko kozmičko zračenje pri donjem rubu sloja.¹³⁶ D sloj sadrži najmanju koncentraciju plazme ($10^2 - 10^4 \text{ cm}^{-3}$) unutar kojeg prevladavaju ioni N_2^+ , O_2^+ , NO^+ i manji dio O^+ .¹³⁷¹³⁸ Zbog svoje nestabilnosti ion N_2^+ se transformira u O_2^+ ostavljajući tako ione O_2^+ i NO^+ kao dva primarna pozitivno nabijena iona D sloja, proces izmjene naboja opisan je sljedećim izrazom.¹³⁹

$$N_2^+ + O_2 \to O_2^+ + N_2 \tag{7}$$

Gdje je:

 N_2^+ = ion molekule dušika O_2 = molekula kisika

 O_2^+ = ion molekule kisika

 N_2 = molekula dušika

¹³⁶ De Canck, M. H., op.cit., p.6.

¹³⁷ Chapagain, N. P., op.cit., p. 2.

¹³⁸ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 182.

¹³⁹ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 182.

5. SVEMIRSKO VRIJEME

Svemirsko vrijeme predstavlja stanje Zemljinog okoliša koje je pod utjecajem Sunčevih aktivnosti. Pojam svemirskog vremena se uglavnom koristi kada utjecaj Sunčevih aktivnosti na geomagnetsko polje ima učinak na tehnologiju i ljude. Svjetska gospodarstva, industrije i ljudi, danas u većem dijelu ovise o tehnologiji, a negativni učinci Sunčevih aktivnosti mogu dovesti do određenog kolapsa normalnog funkcioniranja tehnologije, a posebno osjetljiva je komunikacija. Sunčeve aktivnosti poput KIM–a i sunčevih baklji mogu prouzročiti ogromne štete na Zemaljskoj infrastrukturi. Prilikom kojih cijeli gradovi mogu ostati bez električne energije, mogu prouzročiti ogromnu opasnost za astronaute u svemiru, velike štete mogu nastati na satelitima te dovođe do ometanja određenog GPS signala.¹⁴⁰

Glavni pokretač geomagnetske aktivnosti je proces prespajanja MMP–a i geomagnetskog polja, a kolika će se energija osloboditi prilikom magnetskog prespajanja ovisit će najviše o orijentaciji MMP–a u odnosu na geomagnetsko polje i brzini Sunčevog vjetra.¹⁴¹ Prespajanjem silica magnetskih polja dolazi do poremećaja stanja svemirskog vremena. Poremećaje stanja svemirskog vremena se uglavnom povezuje uz geomagnetske oluje, koje se još nazivaju ionosferske oluje ili povišeni radio šum u slučaju degradacije GPS signala.¹⁴² Poremećaji svemirskog vremena se prate kroz geomagnetske indekse koji periodično prate intenzitet struja (magnetopauze, magnetskog repa, prstenaste i električne mlazove) nastali interakcijom električnih polja sunčevog vjetra i magnetosfere.¹⁴³

GPS signal je podložan određenom ometanju za vrijeme geomagnetskih oluja uslijed kojega se pojavljuje degradacija točnosti položaja korisnika (veličina pogreške ovisit će o intenzitetu geomagnetske oluje), smanjen je integritet i funkcionalnost cjelokupnog sustava, a ponekad je moguć potpuni gubitak GPS signala za određivanje položaja.¹⁴⁴ Stoga je ključno poznavanje svih faktora i procesa koje dovođe do degradacije GPS signala s ciljem što kvalitetnijeg razumijevanja i mogućeg djelovanja, da bi se izbjegle određene negativne posljedice.

¹⁴⁰ Frankoi, A. et all., op.cit., p. 550.

¹⁴¹ Gonzalez, W. D., Tsurutain, B. T. i Gonzalez, A. C.: *Interplanetary Origin of Geomagnetic Storms*, Space Science Reviews vol.88, 1999., p. 530.

¹⁴² Brčić, D., op.cit., p. 34.

¹⁴³ Tsutomu, N.: *Geomagnetic Storms*, Journal of the Communications Research Laboratory vol.49., No.3, 2002., p.141-142.

¹⁴⁴ Brčić, D., op.cit., p. 34.

5.1. GEOMAGNETSKI INDEKSI

Geomagnetski indeksi se koriste kako bi se okarakteriziralo dinamično geomagnetsko stanje tj. magnetosfersko – ionosfersko stanje. Primarna funkcija geomagnetskih indeksa je, da bilježe jačinu magnetskog polja koje je opisano kao vektor (F) u jedinici vremena.¹⁴⁵ Vremenska opažanja poremećaja geomagnetskog polja se vrše magnetometrima na magnetosferskim opservatorijima.

K/Kp indeks – logaritamske dnevne trosatne vrijednosti koje predstavljaju razinu varijabilnost horizontalne komponente magnetskog polja mjerene na 12 stanica između 48° i 63° sjeverne i južne geomagnetske širine.¹⁴⁶ *K* indeks označava varijaciju magnetskog polja na pojedinoj stanici za jedan dan. Dok *Kp* indeks označava srednju vrijednost svih 12 stanica, također za jedan dan. Razine varijabilnosti su izražene na skali od 0 do 9 gdje svaka razina je podijeljena dodatno na trećine $(0_0,0+,1-,1_0,1+,2-,2_0,2+,....,9-,9_0)$ što u konačnici dovodi do 28 razina.¹⁴⁷ Smatra se da pojačana geomagnetska aktivnost počinje tek nakon razine 5.

Ap/ap indeks predstavljaju linearne ekvivalente *Kp* indeksa za linearan prikaz geomagnetske oluje, a ne samo geomagnetskog poremećaja. Da bi se linearno prikazalo potrebno je izvršiti konverziju prema tablici koju je predložio J. Bartels gdje se *ap* indeks prikazuje kao trosatna vrijednost ekvivalentna *Kp* indeksu, gdje svaka razina *Kp* je ekvivalentna promjeni polja 2 *nT-a* dok *Ap* indeks se prikazuje kao 24 satna srednja vrijednost *ap*.¹⁴⁸

Кр	00	0+	1-	10	1+	2-	20	2+	3-	30	3+	4-	4 ₀	4+
ар	0	2	3	4	5	6	7	9	12	15	18	22	27	32
Кр	5-	5 ₀	5+	6-	6 ₀	6+	7-	7 ₀	7+	8-	80	8+	9-	9 ₀
ар	39	48	56	67	80	94	111	132	154	179	207	236	300	400

Tablica 1. Konverzija Kp u ap

Izvor: https://www.ngdc.noaa.gov/stp/geomag/kp_ap.html

¹⁴⁵ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 311.

¹⁴⁶ Brčić, D., op.cit., p. 44.

¹⁴⁷ National Oceanic and Atmospheric Administration, *Geomagnetic kp and ap Indices*, Mrežno: <u>https://www.ngdc.noaa.gov/stp/geomag/kp_ap.html</u>

¹⁴⁸ Kane, R., P., op.cit., p. 487.

AE indeks (engl. *Auroral Electrojet* – AE) – satne vrijednosti aktivnosti auroralnog mlaza koje izričito prate magnetsku aktivnost polarnih područja.¹⁴⁹ Mjerenja se vrše na 12 stanica koja se razlikuju u geografskoj dužini, ali u istoj UT (engl. *Universal Time* – UT) vremenskoj skali, gdje se također prati varijacija horizontalne komponente.¹⁵⁰ Okosnica mjerenja je srednja vrijednost odstupanja horizontalne komponente svake stanice, koja se mjeri svaki mjesec. Prilikom mjerenja odabire se najmanja i najveća vrijednost. Najmanja vrijednost horizontalne komponente se označava s *AL* (engl. *Auroral Lower* – AL) dok najveća vrijednost se označava s AU (engl. *Auroral Upper* – *AU*). *AE* je tada definiran kao razlika između najveće i najmanje vrijednosti (*AE* = AU - AL).¹⁵¹

Dst indeks (engl. *Disturbance storm time index* – *Dst*)– satne vrijednosti geomagnetske varijacije se mjere na četiri stanice koje se nalaze u blizini geomagnetskog ekvatora.¹⁵² Zbog velike udaljenosti od auroralnih područja *Dst* indeks izvrsno prikazuje utjecaj prstenaste struje na horizontalnu geomagnetsku komponentu.¹⁵³ Na temelju intenziteta geomagnetske aktivnosti *Dst* indeks se proračunava kao razina protoka strujanja iona i elektrona unutar prstenaste struje. *Dst* indeks se može povezati s ukupnom energijom prstenaste struje.¹⁵⁴ *Dst* indeks se koristi da bi se karakterizirala jakost geomagnetske aktivnosti na skali od približno +100 *nT* do -400 *nT*, gdje 0 *nT* se smatra za geomagnetsko mirno vrijeme.¹⁵⁵

5.2. DINAMIKA GEOMAGNETSKIH POREMEĆAJA

Sunčev vjetar i MMP kao dva glavna faktora utječu na unos energije i plazme u geomagnetsko polje. U ovisnosti o dinamici ova dva faktora ovisit će stanje magnetosfere i ionosfere. Za vrijeme mirnih uvjeta sunčeve aktivnosti MMP je stalan te je slabiji unos plazme unutar magnetosfere tj. niži je stupanj auroralnih aktivnosti. Međutim za vrijeme poremećenih uvjeta sunčeve aktivnosti stvara se jako MMP južne orijentacije što dovodi do stvaranja geomagnetskih oluja i pod-oluja. Razlika između oluja i pod-oluja je u vremenskom trajanju.

¹⁴⁹ Brčić, D., op.cit., p. 44.

¹⁵⁰ Kane, R., P., op.cit., p. 487.

¹⁵¹ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 312.

¹⁵² Kane, R., P., op.cit., p. 488.

¹⁵³ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 312.

¹⁵⁴ Tsutomu, N., op.cit., p. 142-143.

¹⁵⁵ Gonzalez, W., D. At all.: *What is geomagnetic storm*?, Journal of Geophysical Research, vol.99., No.4, 1994., p. 5774.

Geomagnetske oluje predstavljaju dugotrajno djelovanje (nekoliko sati) MMP-a južne orijentacije na geomagnetsko polje, dok pod-oluje predstavljaju kratkotrajna djelovanja (najduže 1-2 sata vremena) MMP-a južne orijentacije na geomagnetsko polje i također pod-oluje mogu nastati neovisno o olujama, dok oluje nastaju u slučaju većeg broja pod-oluja pretežito u polarnim područjima.¹⁵⁶ Nastanak geomagnetskih oluja uvjetovan je udarnim valom nastalim u području interakcije brzog te sporog Sunčevog vjetra unutar područja KPI-a dok nastanak pod-oluja je uvjetovan magnetskim prespajanjem na dnevnoj strani uslijed neznatno jakog MMP-a južne orijentacije.¹⁵⁷

5.2.1. Geomagnetske pod-oluje

Geomagnetske pod-oluje predstavljaju fenomen magnetosferskog, auroralnog i ionosferskog poremećaja gdje uslijed kratkotrajnog prijelaza orijentacije MMP-a sa sjevernog na južno se stvara određeno magnetsko prespajanje na dnevnoj strani, što dovodi do određenog punjenja energije unutar magnetskog repa te disipacije viška energije nazad u magnetosferu.¹⁵⁸ Zbog povećane aktivnosti u auroralnim područjem geomagnetske podoluje su krakterizirane kao polarne magnetske pod-oluje.

Slika 17. Pod-olujni tijek događaja

¹⁵⁶ Gonzalez, W., D. At all. Ibidem., p. 5780.

¹⁵⁷ Kane, R., P., op.cit., p. 490.

¹⁵⁸ Brovsky, J., E., Valdivia, J., A., op.cit., p. 835.

Izvor: Hargreaves, J.K.: The solar-terrestrial environment, Cambridge University Press, University of Cambridge, Cambridge, United Kingdom, 1992., p. 199.

Životni ciklus geomagnetskih pod-oluja se dijeli u tri faze: faza rasta, faza ekspanzije i faza oporavka.¹⁵⁹

Faza rasta nastaje kada magnetskim prespajanjem MMP-a i geomagnetskog polja na dnevnoj strani dolazi do erozije magnetskog polja, gdje se magnetsko polje prenosi preko polarnih kapa i koncentrira se unutar magnetskog repa, a uslijed povlačenja magnetskog polja magnetosfera se povlači prema Zemlji.¹⁶⁰ Erozijom magnetskog polja se povećava presjek magnetskog polja u repu koji za posljedicu ima određenu kompresiju na plazmu i struju neutralnog sloja. Kompresija je vidljiva i u području struje neutralnog sloja u blizini Zemlje (5-15 R_Z) gdje zbog magnetskog pritiska i povlačenja zatvorenih magnetskih silnica prema Zemlji dovodi do nadomještanja magnetskog toka, uslijed erozije na dnevnoj strani, stvara tanak sloj struje neutralnog sloja.¹⁶¹ Uslijed kompresije magnetskog polja u blizini Zemlje i magnetskog prespajanja na velikim udaljenostima (100-200 R_Z) od Zemlje stvara se određena koncentracija plazme, zarobljena između ova dva područja. Faza rasta traje između pola sata do jedan sat tj. vrijeme koje je proteklo između početnog magnetskog prespajanja na dnevnoj strani, do stvaranja nove točke magnetskog prespajanja u blizini Zemlje.¹⁶² Ionosferski poremećaji su također vidljivi u fazi rasta, gdje se aurora spušta na niže širine, uslijed povećanja magnetskog polja u repu što dovodi do povećane magnetske konvekcije koja povećava aktivnost auroralnog mlaza.¹⁶³

Faza ekspanzije započinje u trenutku kada se stvori potpuno magnetsko prespajanje silnica u novoj neutralnoj točki u blizini Zemlje. U trenutku kada se zadnja zatvorena magnetska silnica prekine, koncentracija plazme tj. plazomid se otpušta i odnosi energiju prema magnetskom repu.¹⁶⁴ Uslijed otpuštanja plazmoida, cijeli magnetski sustav teži vraćanju u normalno dipolarno stanje gdje rastegnute zatvorene magnetske silnice nose energiju iz magnetskog repa prema Zemlji. Zbog rekonfiguracije cijelog magnetskog sustava, jedan dio struje neutralnog sloja u blizini Zemlje

¹⁵⁹ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 309-311.

¹⁶⁰ Bothmer, V. i Daglis, I., A., op.cit., p. 122.

¹⁶¹ Bothmer, V. i Daglis, I., A., op.cit., p. 122.

¹⁶² Kane, R., P., op.cit., p. 493.

¹⁶³ Brovsky, J., E., Valdivia, J., A., op.cit., p. 835.

¹⁶⁴ Hargreaves, J.K., op.cit., p. 199.

nestaje te se preko podolujnog strujnog klina (engl. *Substorm Current Wedge* - SWC) preusmjerava u auroralne područja.¹⁶⁵ Na istočnoj strani podolujnog strujnog klina, struja ulazi te izlazi na zapadnoj strani, a krug cijeli zatvara electrojet struja zapadnog smjera (podolujni električni mlaz).¹⁶⁶ Faza ekspanzije traje od pola sata do jedan sat te zbog pojačane elektrojet struje na polarnim područjima uočljiv je fenomen polarne svjetlosti.

Slika 18. Generiranje podolujnog electrojeta uslijed procesa rekonfiguracije

Izvor: Houghton, J. T., Rycroft, M. J., i Dessler A. J.: Physics of the Space Environment, University of Cambridge, Cambridge, United Kingdom, 1998., p. 310.

Faza oporavka označava period vraćanja cijelog magnetskog sustava u normalu pri kojem dolazi do slabljenja zapadne electojet struje i postupnog vraćanja aurore na početne magnetske širine.¹⁶⁷

5.2.2. Geomagnetske oluje

Magnetske oluje predstavljaju periode dugotrajnog djelovanja Sunčevog vjetra i MMP-a na magnetosfersko-ionosferski sustav. Dinamično djelovanje Sunčevog vjetra koje je uobičajeno

¹⁶⁵ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 310.

¹⁶⁶ Hargreaves, J.K., op.cit., p. 201.

¹⁶⁷ Kane, R., P., op.cit., p. 493.

praćeno IKIM-ovima i Sunčevim bakljama te promjenama orijentacije MMP-a sa sjevernog na južno uzrokuju ogromne promjene u strukturi magnetosfere.¹⁶⁸ Ovakvom interakcijom magnetosfere s KPI-om koje traje u periodu dužem od nekoliko sati, unose se ogromne količine plazme i energije koje se magnetskog konvekcijom ubrizgavaju iz magnetskog repa nazad u unutrašnju magnetosferu što za posljedicu ima pojačano djelovanje prstenaste struje.¹⁶⁹ Razvoj prstenaste struje je proporcionalan unosu energije i plazme unutar magnetosfere za vrijeme geomagnetske oluje, stoga je ona ključan pokazatelj dinamike geomagnetske oluje.¹⁷⁰ *Dst* indeks je izvrstan pokazatelj intenziteta geomagnetske oluje.

Intenzitet oluje	Dst, nT	B_z (MMP-a), nT	<i>dT</i> , h
Jaka	-100	-10	3
Umjerena	-50	-5	2
Slaba (podoluje)	-30	-3	1

Tablica 2. Prikaz parametara intenziteta magnetske oluje

Izvor: Gonzalez, W., D. At all.: What is geomagnetic storm?, Journal of Geophyisical Research, vol.99., No.4, 1994., p. 5774.

Životni ciklus geomagnetske oluje je podijeljen u određene faze: početna faza, glavna faza i faza oporavka.¹⁷¹

Početna faza nastaje uslijed početnog udarnog vala koji prethodi povećanju dinamičkog tlaka Sunčevog vjetra što za rezultat ima kompresiju magnetosfere. Kompresijom kojom Sunčev vjetar djeluje na magnetosferu u pojasu magnetopauze, intenzivira se struja magnetopauze koja za rezultat ima povećanje horizontalne geomagnetske komponente.¹⁷² Ove promjene jačanja geomagnetskog polja se nazivaju *sudden storm commencement* (SSC) ili *sudden impulse* (SI), te mogu trajati od nekoliko minuta do nekoliko sati.¹⁷³ *Dst* indeks poprima pozitivne vrijednosti za vrijeme ove faze.

¹⁶⁸ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 308.

¹⁶⁹ Gonzalez, W., D. et all. Ibidem., p. 5781.

¹⁷⁰ Tsutomu, N., op.cit., p. 143.

¹⁷¹ Kane, R., P., op.cit., p. 497.

¹⁷² Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 308.

¹⁷³ Kane, R., P., op.cit., p. 498.

Glavna faza označava početak magnetskog prespajanja uslijed promijene orijentacije MMPa na južno. Jakost horizontalne geomagnetske komponente na dnevnoj strani počinje padati, te *Dst* indeks također počinje padati prema vrijednosti 0 nT, te skoro vertikalno pada u vrijednosti od nekoliko stotina nT (-100 do -400 nT-a).¹⁷⁴ U početnim satima se uočava proces pojačane magnetske konvekcije iz magnetskog repa u unutrašnju magnetosferu gdje se plazma ubrizgava u sustav prstenaste struje.¹⁷⁵ Uslijed konstantnog pritoka plazme (uglavnom vodikovih iona) unutar prstenaste struje stvara se određeno prodiranje struje u sloj ionosfere, pri kojem se stvara novi pritok kisikovih iona što za rezultat ima povećanje koncentracije nabijenih čestica unutar prstenaste struje.¹⁷⁶ Cijela faza traje u periodu od nekoliko sati do jednog dana tj. periodu vremena južne orijentacije MMP-a.

Faza opravka označava period prestanka djelovanja MMP-a južne orijentacije te postepenog slabljenja prstenaste struje.¹⁷⁷ Uslijed promijene orijentacije MMP-a na sjevernu proces magnetskog prespajanja slabi na dnevnoj strani, što za rezultat ima slabljenje magnetske konvekcije i slab unos plazme unutar prstenaste struje.¹⁷⁸ Faza oporavka traje nekoliko dana, gdje se geomagnetsko polje i *Dst* indeks vraćaju na vrijednosti geomagnetskog mirnog vremena.

Grafikon 2. Prikaz vrijednosti Dst indeksa za Rujan 2017.

Izvor: https://wdc.kugi.kyoto-u.ac.jp/dst_provisional/201709/index.html

5.3. UTJECAJ GEOMAGNETSKIH POREMEĆAJA NA IONOSFERU

Ekstremni poremećaji poput geomagnetskih oluja i podoluja uzrokuju poremećaje unutar strukture ionosfere. Fizikalni procesi poput promjene raspodjele koncentracije nabijenih čestica

¹⁷⁴ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 308.

¹⁷⁵ Tsutomu, N., op.cit., p. 143.

¹⁷⁶ Tsutomu, N., op.cit., p. 144.

¹⁷⁷ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 308.

¹⁷⁸ Houghton, J. T., Rycroft, M. J., i Dessler A. J., op.cit., p. 308.

(primarno ukupnog sadržaja elektrona), gustoće nabijenih čestica, promjena visina i oblika sloja te turbulentnost su rezultat utjecaja dinamičnih struja ionosfere i magnetosfere za vrijeme magnetskih oluja i pod-oluja.¹⁷⁹ Najveće promjene su vidljive u F2 sloju ionosfere, gdje je vrlo visoka promjena koncentracije slobodnih elektrona tijekom geomagnetskih poremećaja.¹⁸⁰

Prilikom dugotrajnog djelovanja MMP-a južne orijentacije stvara se određen unos plazme i energije unutar magnetosfere, te se generira konvektivno električno polje koje ima direktan utjecaj na populaciju plazme ionosfere.¹⁸¹ Plazma u ionosferi je podvrgnuta također procesu ionizacije, gdje se plazma prenosi preko struje magnetskih silnica (Struje Područja 2) i atmosferskih vjetrova iz auroralnih područja u niže geografske širine.¹⁸² Stoga glavni pokretači ionosferskih poremećaja (ionosferskih oluja) su povećanje koncentracije čestica visoke energije, pojačano djelovanje ionosferskih struja te rezultirajuće zagrijavanje slojeva, pojačano djelovanje električnih polja i zagrijavanje uslijed trenja (termalna ekspanzija) na višim geografskim širinama zbog utjecaja magnetosferske konvekcije.¹⁸³

Ionosferske oluje se sastoje od tri faze. Pozitivna faza predstavlja povećanje visine F2 sloja uslijed povećanja koncentracije molekularnih plinova i ukupnog sadržaja slobodnih elektrona (engl. *Total Electron Content* – TEC).¹⁸⁴ Negativna faza oluje (glavna) predstavlja period kada atmosferski vjetrovi odnose molekularne plinove i slobodne elektrone u niže geografske širine prilikom čega se smanjuje koncentracija istih u ionosferi.¹⁸⁵ Faza oporavka slijedi nakon prestanka poremećaja koji uzrokuje pobude unutar ionosfere.

5.3.1. Ionosfera viših geografskih širina

Ionosfera visokih geografskih širina obuhvaća područja od 60° do 90° sjeverne i južne geomagnetske širine. Polarna ionosfera zbog utjecaja otvorenih magnetskih silnica povezana je s

¹⁷⁹ Brčić, D., op.cit., p. 32.

¹⁸⁰ Chukwuma, V., U.: On Ionospheric Phenomena During Pre-Storm and Main Phase of a Very Intense Geomagnetic Storm, Acta Geopysica, vol. 58., No. 6, 2007., p. 1166.

¹⁸¹ Keskinen, M., J.: *The Structure Of The High-latitude Ionosphere and Magnetosphere*, Johns Hopkins APL Technical Digest, vol. 5., No.2, 1984., p.155

¹⁸² Keskinen, M., J., op.cit., p. 156.

¹⁸³ Imatiaz, N., Younas, W., i Khan, M.: *Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017*, Annales Geophysicae, vol. 38., No. 2, 2020. p. 346.

¹⁸⁴ Brčić, D., op.cit., p. 33.

¹⁸⁵ Brčić, D., op.cit., p. 33.

vanjskom magnetosferom, čime je na direktnom utjecaju magnetosferskih poremećaja uzrokovanih Sunčevim vjetrom i MMP-a.¹⁸⁶ Konvektivno električno polje generirano Sunčevim vjetrom zagrijava plazmu prilikom čega dolazi do termalne ekspanzije, gdje se zbog visokih temperatura i tlakova potiče horizontalno gibanje plazme preko magnetskih silnica iz visokih geografskih širina u niže geografske širine.¹⁸⁷

5.3.1. Ionosfera srednjih i nižih geografskih širina

Ionosfera srednjih geografskih širina obuhvaća područje od 20° do 60° sjeverne i južne geomagnetske širine. Unutar geomagnetskog polja na srednjim širinama ne primjećuje se dominacija horizontalne ni vertikalne komponente polja, stoga sloj ionosfere je dosta tanji u odnosu na druge geografske širine.¹⁸⁸ Neutralni vjetrovi prenose molekularne plinove i čestice preko magnetskih silnica prema ekvatoru i polovima što za rezultat ima ravnotežu stvaranja i gubitaka plinova i čestica.¹⁸⁹

Ionosfera nižih geografskih širina obuhvaća područje od 0° do 20° sjeverne i južne geomagnetske širine. U blizini geomagnetskog ekvatora horizontalna komponenta geomagnetskog polja je najizraženija, te ionizacija unutar ionosferskog F sloja poprima vertikalni pomak (engl. *drift*), zbog nastanka električnog polja koje generira geomagnetska aktivnost.¹⁹⁰ Također zbog iznimno jake geomagnetske horizontalne komponente unutar E sloja pojačan je intenzitet struje ekvatorijalnog mlaza, gdje također dolazi do vertikalnog pomaka.¹⁹¹

5.4. UTJECAJ IONOSFERE NA GPS SIGNAL

Elektromagnetski radio valovi koji su odaslani s GPS satelita su podložni određenim pogreškama tj. vremenskim kašnjenjima signala kako je navedeno u poglavlju 2 (pogreška zbog prijenosnog medija). Najveće pogreške se javljaju prolaskom GPS signala kroz medij ionosfere,

¹⁸⁶ Hargreaves, J.K., op.cit., p. 312.

¹⁸⁷ Imatiaz, N., Younas, W., i Khan, M., op.cit., p. 346.

¹⁸⁸ Bradley, P., A. at all.: *Handbook, the Ionosphere and Its Effects on Radiowave Propagation: A Guide with Background to ITU-R Procedures for Radioplanners and Users*, International Telecommunication Union Radiocommunication Bureau, 1998., p. 17.

¹⁸⁹ Brčić, D., op.cit., p. 30.

¹⁹⁰ Bradley, P., A. at all., op.cit., p. 16

¹⁹¹ Hargreaves, J.K., op.cit., p. 276.

gdje signal na putu do prijamnika mijenja smjer i brzinu. Ionosferski medij djeluje na GPS signal kroz interakciju elektromagnetskog radio vala s nabijenim elektronima i ionima što uzrokuje pogreške mjerenja vremena propagacije GPS signala te se ta pojava naziva ionosfersko kašnjenje.¹⁹² Ukupni sadržaj elektrona (TEC) je iznimno važan parametar kod utvrđivanja mjere ionosferskog kašnjenja signala, te je dan kao integrirani broj slobodnih elektrona vertikalnog stupca presjeka 1m² koji se nalaze na putu između satelita i antene korisničkog prijamnika kroz kojeg prolazi GPS signal,¹⁹³ te je opisan sljedećim izrazom:¹⁹⁴

$$TEC = \int N_e(s)ds \tag{8}$$

Gdje je:

 N_e = gustoća elektrona u vertikalnom stupcu (m^{-3})

s = visina iznad površine Zemlje (m)

TEC parametar opisan je kao vrijednost gdje 1TEC iznosi približno $10^{16} \ elektrona/m^2$

Prilikom odašiljanja GPS signala sa satelita najkraći put bi bio kada bi se satelit nalazio u zenitu antene korisničkog prijamnika. U većini slučajeva sateliti se ne nalaze u zenitu antene prijamnika, stoga kada je signal odaslan sa satelita zbog većeg zenitnog kuta, signal prolazi više vremena kroz ionosferu i povećava se vrijednost ionosferskog kašnjenja.¹⁹⁵ Stoga je potrebno modelirati TEC vrijednosti pri različitom kutu elevacije prijema signala (engl. *Slant Total Electron Content* – STEC) u vertikalne vrijednosti TEC-a (engl. *Vertical Total Electron Content* – VTEC) prema sljedećem izrazu:¹⁹⁶

$$N_e(s)ds = N_e(h) \sec a \ dh \tag{9}$$

Gdje je:

¹⁹² Jakowski, N. At all.: *Space Weather Effects in the Ionosphere and their impact on positioning, DLR: Conference: 'Space weather workshop'*, ESTEC, 17-19, 2001. p. 3.

¹⁹³Brčić, D., op.cit., p. 28.

¹⁹⁴ Bradley, P., A. at all., op.cit., p. 121.

¹⁹⁵ Brčić, D., op.cit., p. 28.

¹⁹⁶ Bradley, P., A. at all., op.cit., p. 121.

 $N_e(h)$ = gustoća elektrona duljinom puta signala h (m^{-3})

a = Zenitni kut signala odaslanog sa satelita na ionosferskoj visini (~400 km nadmorske visine)

Dnevno kretanje ili hod TEC-a iznad korisnika će ovisiti o kolićini Sunčevog zračenja i Sunčevom zenitnom kutu, što znači da će dnevna strana imati povećanje TEC-ova u odnosu na noćnu.¹⁹⁷

Prisustvo slobodnih elektrona u ionosferi utječe na GPS signal kroz kašnjenje valne grupe kodiranog signala u odnosu na ekvivalentno napredovanje faze vala nosioca (engl. *Time Delay*).¹⁹⁸ Međutim ionosfera djeluje kao disperzivan medij na GPS signal (L frekvencijskog valnog pojasa $1 - 2 \ GHz$) odaslan sa satelita tj. uslijed povećanja frekvencije elektromagnetskog radio vala $(1/f^2)$ smanjuje se pogreška koja utječe na vrijeme propagacije GPS signala (ionosferska disperzija).¹⁹⁹ Na temelju ionosferske disperzije i kašnjenja valne grupe kodiranog siganla za različite frekvencije unutar L frekvencijskog valnog pojasa, TEC vrijednosti se proračunavaju na temeljeu sljedećeg izraza:²⁰⁰

$$TEC = \frac{\Delta \Phi \times f_1^2 f_2^2}{K \times (f_1^2 - f_2^2)} + TEC_{cal}$$
(10)

Gdje je:

 $\Delta \Phi$ = razlika između faza valova nosioca dviju frekvencija

 f_1, f_2 = mjerne frekvencije L frekvencijskog valnog pojasa

 $K = 40.3 \ m^3 s^{-2}$

TECcal =dodatne pogreške uslijed kalibracije satelita i prijamnika

¹⁹⁷ Brčić, D., op.cit., p. 29.

¹⁹⁸ Brčić, D., op.cit., p. 35.

¹⁹⁹ Bothmer, V. i Daglis, I., A., op.cit., p. 384.

²⁰⁰ Bothmer, V. i Daglis, I., A., op.cit., p. 385.

Stoga pojava ionosferskog kašnjenja GPS signala je proporcionalna ukupnom broju slobodnih elektrona koji se nalaze na putu između satelita i antene prijamnika i obrnuto proporcionalno kvadratu frekvencije koja prenosi kodirani signal.²⁰¹ Ionosfersko kašnjenje GPS signala je opisano sljedećim izrazom:²⁰²

$$d_I = \frac{\kappa}{f^2} TEC \tag{11}$$

Gdje je:

 d_I = Ionosfersko kašnjenje

 $K = 40.3 \ m^3 s^{-2}$

f = mjerna frekvencija L frekvencijskog valnog pojasa

5.4.1. Degradacija GPS signala uslijed ionosferske oluje

Uslijed velikih unosa plazme i energije u obliku pojačanog električnog polja, te povećanih djelovanja električnih struja, procesa ionizacije i zagrijavanja čestica za vrijeme geomagnetskih poremećaja, generiraju se ionosferske oluje. Ionosferske oluje kao događaji su okarakterizirani kao ekstremne promijene vrijednosti ukupnog sadržaja elektrona unutar sloja ionosfere. Ekstremne promijene vrijednosti TEC-ova uvelike djeluju na GPS signal u obliku pogreške mjerenja vremena propagacije signala (engl. *ranging error*) i naglih fluktuacija amplitude i faze radiovala (scintilacija).²⁰³

Pogreške mjerenja vremena propagacije signala stvaraju se prilikom strmih gradijenata refrakcijskih učinaka ionosferskih TEC-ova.²⁰⁴ Zbog ne homogenosti ionosferske plazme, GPS signal koji putuje kroz slojeve ionosfere doživljava lom zrake signala što u konačnici povećava geometrijski put signala.²⁰⁵ Za vrijeme povećane geomagnetske aktivnosti, promjene u gustoći

²⁰¹ Brčić, D., op.cit., p. 39.

²⁰² Bothmer, V. i Daglis, I., A., op.cit., p. 385.

²⁰³ Jakowski, N. et.all., op.cit., p. 4.

 ²⁰⁴ Yang, Z., et.all.: Global view of ionospheric disturbance impacts on kinematic GPS positioning solutions during the 2015 St. Patrick's Day storm, Journal of Geophysical Research: Space Physics vol.125., No.7, 2020., p. 2.
 ²⁰⁵ Brčić, D., op.cit., p. 37-38.

elektrona proizvode vremenska kašnjenja GPS signala, što za rezultat ima pogreške mjerenja pseudoudaljenosti.

Ionosferska scintilacija tj. fluktuacije u amplitudi i fazi radiovala nastaju uslijed strukturnih nepravilnosti gustoće plazme ionosfere, gdje radioval koji putuje kroz ionosferu je podložan mehanizmima raspršenja i difrakcije.²⁰⁶ Ionosferska scintilacija može dovesti do toga da GPS prijamnik ne može pratiti jedan ili više vidljivih satelitskih signala kroz znatno vrijeme.²⁰⁷

²⁰⁶ Bradley, P., A. et all., op.cit., p. 127. ²⁰⁷ Yang, Z., et.all., op.cit., p. 2.

6. METODOLOGIJA ISTRAŽIVAČKOG RADA

Cilj ovog poglavlja je prikazati što se istraživalo, na koji način se istraživalo, koji alati su upotrijebljeni za obradu istraživačkih podataka i na kraju tumačenje rezultata rada. Istraživanje se temelji na analizi degradacije GPS signala uslijed poremećaja svemirskog vremena tj. poremećaja geomagnetskog polja Zemlje. Analizom geomagnetskih komponenti i geomagnetskih pokazatelja stanja svemirskog vremena željelo se prikazati njihov dinamičan utjecaj na točnost GPS signala.

6.1. VREMENSKI PERIOD I GEOGRAFSKO PODRUČJE ISTRAŽIVANJA

Za vremenski period istraživanja uzet je period od pet dana od 06.09.2017. do 10.09.2017. (DOY 259 – 263). Cilj istraživačkog rada je bio odrediti utjecaj geomagnetske oluje (08.09.2017.) na GPS pozicioniranje tj. utjecaj geomagnetskih učinaka na degradaciju točnosti GPS signal. Da bi se kvalitetno mogao analizirati utjecaj oluje, odabran je period vremena od dva dana prije oluje, sam dan oluje i period vremena dva dana nakon oluje. Geografsko područje istraživanja obuhvaćalo je područje u blizini meridijana *Greenwich*, s ciljem analiziranja dinamičkog napredovanja oluje od polova prema ekvatoru.

Slika 19. Prikaz IGS stanica (crveni kružići) i INTERMAGNET stanica (žuti kvadratići)

Izvor: Izrada studenta na temelju preuzete mrežne stranice (<u>https://geektech.me/hr/the-first-accurate-map-of-the-world-was-created-whats-wrong-with-everyone-else/</u>)

6.2. IZVORI, PRIKUPLJANJE I PRIPREMA ISTRAŽIVAČKIH PODATAKA

Svi istraživački podatci su prikupljeni preko baza podataka ovlaštenih organizacija.

Za promatranje odstupanja GPS signala odabrane su četiri *IGS* (engl. *International GNSS Service* – IGS) stanice smještene na polarnim , umjerenim i ekvatorskim geografskim širinama.²⁰⁸

IGS stanice	Geografska	Geografska	Nadmorska	Ime stanice	
	Širina (φ°)	dužina (λ°)	visina (<i>h</i>)		
Ny-Alesund, Norway	+78,9296°	+11,8651°	79 m	NYAL00NOR	
Padova, Italia	+45,4111°	+11,8960°	64,7 m	PADO00ITA	
Libreville, Gabon	+0,3539°	+9,6721°	32 m	NKLG00GAB	
Hermanus, South Africa	-34,4246°	+19,2230°	63 m	HNUS00ZAF	

Tablica 3. Položaj IGS stanica

Izvor: Izrada studenta na temelju preuzetih podataka s INTERMAGNET-ove mrežne stranice

IGS stanice kontinuirano prate i memoriraju visokokvalitetne GNSS podatke od 1994. Podatci imaju široku primjenu od znanstvenih, edukacijskih i istraživačkih primjena pa sve do komercijalnih (navigacijskih) primjena. Odstupanja položaja svake stanice (u koordinatama φ, λ, h) se temelji na statističkoj obradi podataka koji uključuju položajne zapise (engl. *POsitioning Solutions - POS*). S ciljem generiranja položajnih zapisa za svaku stanicu potrebni su *RINEX* (engl. *Receiver INdependent EXchange Format - RINEX*) format podatci. RINEX format koristi dvije vrste datoteka, opservacijske (.o i .d) datoteke koje sadrže podatke o vremenima mjerenja i navigacijske (.n) datoteke koje sadrže podatke navigacijskih poruka.²⁰⁹ Opservacijske datoteke se preuzimaju individualno za svaku stanicu preko IGS-ove baze podataka, dok navigacijska datoteka se preuzima s NOAA's *National Geodetic Survey* (NGS) baze podataka, globalno za pojedini dan u godini.

²⁰⁸ International GNSS Service, mrežno:(<u>https://igs.org/network/</u>)

²⁰⁹ Brčić, D.: *Generiranje položajnih zapisa*, Vježbe 3., 14. ožujak 2021., online:(<u>https://moodle.srce.hr/2020-</u>2021/pluginfile.php/5043006/mod_resource/content/1/3_Generiranje_polozajnih_zapisa.html)

Za promatranje parametra geomagnetske aktivnosti odabrana su četiri magnetska opservatorija u relativnoj blizini *IGS* stanica, za što kvalitetniju analizu usporedbe podataka. *INTERMAGNET* opservatoriji su analizirani prilikom istraživačkog rada, gdje oni predstavljaju globalnu mrežu opservatorija za praćenje geomagnetskog polja.²¹⁰

INTERMAGNET stanica	Geografska Širina	Geografska	Nadmorska	IAGA kod
	(arphi)	dužina (λ)	visina (h)	
Hornsund, Norway	77,0000°	15,5500°	15 m	HRN
Lonsko Polje, Croatia	45,4081°	16,6592°	95 m	LON
Ascension Island, United	-7,9500°	-14,3800°	177 m	ASC
Kingdom				
Hermanus, South Africa	-34,4300°	+19,2300°	26 m	HER

Tablica 4. Položaj INTERMAGNET stanica

Izvor: Izrada studenta na temelju preuzetih podataka s INTERMAGNET-ove mrežne stranice

Podatci o komponentama jakosti geomagnetskog polja (B_x, B_y, B_z) , preuzeti su preko INTERMAGNET-ove baze podataka u *.min* formatu.

Za promatranje parametara geomagnetskih pokazatelja korišteni su *Kp*, *Ap* i *Dst* indeksi. *Kp* i *Ap* indeksi su preuzeti s GFZ Potsdam baze podataka u .*dat* formatu, dok *Dst* indeks je preuzet s World Data Center for Geomagnetism, Kyoto baze podataka također u .*dat* formatu.

6.3. KORIŠTENI ALATI TIJEKOM ISTRAŽIVANJA

Da bi se mogla izvršiti statistička analiza položajnih odstupanja potrebno je generirati položajne zapise, za svaku stanicu posebno. *RTKLIB* je programski paket otvorenog koda koji sadrži programe za analizu i grafički prikaz traženih podataka. Program *RTKPOST* za analizu podataka, služi za generiranje položajnih zapisa (*.pos*) na temelju *RINEX*-ovih opservacijskih i navigacijskih datoteka. Opservacijske datoteke (*.d*) potrebno je prije korištenja formatirati unutar programskog alata *RNXCMP* u (*.o*) format. Na temelju opservacijske datoteke (*.o*) i navigacijske

²¹⁰ INTERMAGNET, online:(<u>https://intermagnet.github.io/</u>)

datoteke (.n) unutar programskog alata *RTKPOST* generiraju se položajni zapisi (.pos). Prilikom generiranja položajnih zapisa važno je napomenuti da je odabran GPS sustav te su primijenjena jednominutna intervalna vremenska opažanja, kut maskiranja je podešen na 15°, željena frekvencija je L1, odabran *Broadcast* model za uklanjanje ionosferskog kašnjenja, odabran *Saastamoinen* model za uklanjanje troposferskog kašnjenja i odabran je *Broadcast* model satelitskih efemerida.

Nakon položajnih zapisa potrebno je bilo izvršiti pripremu podataka, koji uključuju komponente jakosti magnetskog polja (*.min*) i parametre geomagnetskih pokazatelja (*.dat*) u programu *Notepad* ++.

Na temelju pripremljenih položajnih zapisa i geomagnetskih podataka započinje daljnja obrada podataka unutar programskog okruženja *RStudio. RStudio* je besplatno i otvoreno integrirano razvojno okruženje za R programski jezik kojem je primarna funkcija statistička analiza podatka i njihovo grafičko prikazivanje. Unutar *RStudija* obrađivali su se položajni zapisi i geomagnetski podatci na temelju pisanja programskog koda. Statistički značajne vrijednosti poput minimuma, maksimuma, srednje vrijednosti, medijana i standardne devijacije su proračunate i spremljeni za prikaz unutar *Excel* programa za tablično računanje.

6.4.METODE OBRADE I ANALIZE PRIKUPLJENIH PODATAKA

Prikupljene podatke potrebno je metodološki obraditi, analizirati te statistički i grafički prikazati. Unutar ovog poglavlja prikazane će biti metode proračuna odstupanja položaja i metode statističke analize podatkovnih okvira.

6.4.1. Proračun odstupanja položaja

Prilikom proračuna odstupanja položaja, potrebno je pojam položaj rastaviti na faktore geografske širine, geografske dužine i nadmorske visine u 3-D koordinatnom sustavu. Odstupanje položaja po geografskoj širini predstavlja odstupanje u smjeru sjever – jug, te po geografskoj dužini predstavlja odstupanje u smjeru istok – zapad. Oni zajedno čine pogrešku horizontalne ravnine. Dok odstupanje po nadmorskoj visini predstavlja odstupanje u smjeru gore – dolje i čini pogrešku vertikalne ravnine. Za proračun odstupanja položaja potrebna su dva faktora. Prvi faktor

je referentni ili stvarni položaj stanice koji se ne mijenja, dok je drugi faktor izmjereni položaj stanice na temelju prijama GPS signala. Odstupanje položaja se proračunava tako da od stvarnih položajnih koordinata $P(\varphi, \lambda, h)$ stanice u intervalima vremena (u slučaju ovog istraživanja jednominutnim intervalima) oduzimaju izmjerene položajne koordinate $P'(\varphi', \lambda', h')$. Stoga pogreške odstupanja predstavljaju razliku između stvarnog i izmjerenog položaja.

$$d\varphi_{i} = \varphi_{i}' - \varphi$$

$$d\lambda_{i} = \lambda_{i}' - \lambda \qquad (12)$$

$$dh_{i} = h_{i}' - h$$

Gdje je:

 $d\varphi_i$, $d\lambda_i$, dh_i = odstupanje položaja (u odnosu na stvarni položaj)

 $\varphi_i', \lambda_i', h_i' =$ komponente izmjerenog položaja

 φ , λ , h = komponente stvarnog položaja

6.4.2. Statistička analiza

Statistička analiza obuhvaća metode prikupljanja, uređenja, analize i tumačenja nad cijelim skupom podataka (populacijom) ili nad određenim dijelom informacija (skupom) koji čini podskup skupa populacije podataka . S ciljem što kvalitetnije obrade podataka unutar određene populacije potrebno je da podatci koji se promatraju imaju ista svojstva i obilježja npr. prostor, vrijeme.²¹¹ Prilikom statističke analize istraživačkog rada korištene su metode centralne tendencije²¹² i mjere raspršenosti podataka (disperzije).²¹³ Također za usporedbu podataka korištena je korelacijska analiza.

²¹¹ Gogala, Z.: Osnove Statistike, Sinergija, Zagreb, 2001., p. 1-2.

²¹² Dizdar, D.: Osnove Statistike i Kineziometrije, Sveučilišta u Zagrebu, Zagreb, 2010., p. 20-22.

²¹³ Gogala, Z., op.cit., p. 66-76.
6.4.2.1. Metode centralne tendencije

Aritmetička sredina je temeljna vrijednosti centralne tendencije koja opisuje kvocijent zbroja vrijednosti svih članova i broja članova određenog skupa podataka.²¹⁴

$$\bar{\mathbf{x}} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{13}$$

Gdje je:

n = broj članova određenog skupa podataka

 x_i = zbroj vrijednosti svih članova skupa

 $\bar{\mathbf{x}} = aritmetička sredina$

Mod ili dominantna vrijednost predstavlja vrijednost centralne tendencije kojoj je frekvencija opažanja unutar promatranog skupa podataka najveća.

Medijan ili centralna vrijednost predstavlja vrijednost koja dijeli određeni promatrani skup podataka na dva jednaka dijela (sredina promatranog skupa podataka). Ako promatrani skup ima neparan broj podataka onda vrijedi slijedeći izraz.²¹⁵

$$\mu_e = x_r \ gdje \ je \ r = (n+1)/2 \tag{14}$$

Gdje je:

n = broj članova određenog skupa podataka

 μ_e = medijan

Ako promatrani skup ima paran broj podataka onda vrijedi slijedeći izraz.²¹⁶

$$\mu_e = \frac{(x_{r1} + x_{r2})}{2} gdje je r1 = \frac{n}{2}, a r2 = \left(\frac{n}{2}\right) + 1 \quad (15)$$

²¹⁴ Dizdar, D., op.cit., p. 20.

²¹⁵ Dizdar, D., op.cit., p. 22.

²¹⁶ Dizdar, D., op.cit., p. 22.

Gdje je:

n = broj članova određenog skupa podataka

 μ_e = medijan

6.4.2.2. Metode raspršenosti/disperzije podataka

Kvantil predstavljaju vrijednosti koje određeni skup podataka dijele na različiti broj dijelova. U slučaju ovog istraživačkog rada skupovi podataka su podijeljeni na četiri jednaka dijela, stoga poprimaju naziv kvantil četvrtog reda. Položaj prvog ili donjeg kvantila predstavlja 25% skupa podataka, a preostalih 75% skupa podataka predstavlja vrijednosti jednake ili veće od donjeg kvantila.

Standardna devijacija predstavlja prosječno odstupanje vrijednosti od aritmetičke sredine. Ona može poprimati pozitivne i negativne vrijednosti.²¹⁷

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})}{n}}$$
(16)

Gdje je:

 σ = standardna devijacija

n = broj članova određenog skupa podataka

 x_i = zbroj vrijednosti svih članova skupa

 $\bar{\mathbf{x}} = aritmetička sredina$

6.4.2.3. Korelacijska analiza

Korelacijskom analizom želi se utvrditi međusobna povezanost dviju ili više statističkih varijabli.²¹⁸ Ona je izražena koeficijentom korelacije, koji može biti pozitivan ili negativan (+1,-

²¹⁷ Dizdar, D., op.cit., p. 24.

²¹⁸ Gogala, Z., op.cit., p. 145-146.

1). Korelacijskom analizom utvrđuje se da li je povezanost pozitivna ili negativna i da li je povezanost jaka ili slaba. Pozitivna korelacija predstavlja kada se linearan porast jedne varijable uzrokuje linearan porast druge varijable, dok negativna korelacija predstavlja slučaj kada linearan porast jedne varijable uzrokuje linearan pad druge varijable. ²¹⁹ Također postoji i nelinearna korelacija unutar kojeg postoji korelacija između dvije varijable, međutim nema linearnog povećanja ili smanjivanja jedne varijable u odnosu na drugu.²²⁰

Koeficijent korelacije je podijeljen na potpuno pozitivan, nepotpuno pozitivan, jednak nuli, nepotpuno negativan i potpuno negativan koeficijent.²²¹

Potpuno pozitivan koeficijent (r = +1) predstavlja maksimalnu pozitivnu korelaciju između dvije promatrane statističke varijable. Nepotpuno pozitivan koeficijent (0 > r > +1) korelacije, predstavlja stupanj pozitivne povezanosti dvaju parametara unutar intervala maksimalne pozitivne i nikakve ili slabe povezanosti. Koeficijent korelacije jednak nuli (r = 0) predstavlja stupanj nepovezanosti između dvije varijable u slučaju kad vrijednost jedne varijable ne utječe na drugu varijablu. Nepotpuno negativan koeficijent (0 > r > -1) predstavlja stupanj korelacije unutar intervala nikakve ili slabe povezanosti i maksimalno negativne povezanosti gdje povećanjem jedne varijable druga se smanjuje. Potpuno negativan koeficijent (r = 0) predstavlja maksimalno negativnu korelaciju.

Tablica 5. Tumačenje koeficijenata korelacije

Koeficijenti	Tumačenje
0,00 +/- 0,2	Nikakva povezanost
+/- 0,2 +/- 0,4	Slaba povezanost
+/- 0,4 +/- 0,7	Značajna povezanost
+/- 0,7 +/- 1,0	Visoka povezanost

Izvor: Jureković P.: "Komparativna parcijalna analiza raspršenja položajne točnosti GPS i GLONASS sustava u različitim stanjima svemirskog vremena", Diplomski rad, Sveučilište u Rijeci, Pomorski fakultet, Rijeka 2018.

²¹⁹ Dizdar, D., op.cit., p. 48.

²²⁰ Gogala, Z., op.cit., p. 146.

²²¹ Dizdar, D., op.cit., p. 50 - 52.

7. UTJECAJ GEOMAGNETSKIH UČINAKA NA ODREĐIVANJE POLOŽAJA SUSTAVOM GPS TIJEKOM GEOMAGNETSKE OLUJE 8. RUJNA 2017. GODINE

Unutar ovog poglavlja analiziran je utjecaj geomagnetske oluje 8. Rujna 2017. godine na GPS pozicioniranje četiri IGS stanica, kroz analizu komponenti geomagnetskog polja INTERMAGNET-ovih stanica i geomagnetskih pokazatelja. Glavni uzročnik geomagnetske oluje je bio koronarni izbačaj mase koji je dostizao vrijednosti magnetskog učinka 8+ na *Kp* indeks skali. Statističkih parametri odstupanja geografskih koordinata, komponenti geomagnetskog polja i geomagnetskih pokazatelja su prikazani grafički u vremenskom nizu promatranog perioda od 6. do 10. Rujna. Kroz histograme opisane su frekvencije opažanja određenih vrijednosti komponenti geomagnetskog polja i na kraju kroz korelacijske matrice napravljena je prosudba međusobne povezanosti više promatranih varijabli.

7.1. ANALIZA GEOMAGNETSKIH POKAZATELJA

Kroz pokazatelje stanja geomagnetske aktivnosti utvrđuje se dinamično napredovanje geomagnetske oluje. Zbog različitog rasporeda IGS/INTERMAGNET stanica po geografskoj širini prilikom istraživanja, analizirali su se Kp, Ap, Ae i Dst geomagnetski indeksi. Grafovi geomagnetskih indeksa su prikazani u vremenskoj skali između 6. i 10. Rujna te opisuju njihove vrijednosti. Glavni cilj istraživanja geomagnetskih indeksa je bio utvrditi njihovu povezanost s geomagnetskom olujom tj. njihovo dinamično kretanje u periodu dva dana prije oluje (početna faza oluje), na dan oluje (glavna faza oluje) i dva dana nakon oluje (faza oporavka).

	Kp/ap	Ap	Ae	Dst
Minimum	0	3	11	-122
1.Kvartil	2	4	48,75	-47
Medijan	10,5	8	142	-22
Srednja vrijednost	31,625	31,4	282,0167	-26,8833
3.Kvartil	22	36	387	7
Maksimum	236	106	1442	52

Tablica 6. Prikaz vrijednosti geomagnetskih pokazatelja

Izvor: Izrada studenta u programu Rstudio na podataka GFZ Potsdam baze podataka i World Data Center for Geomagnetism, Kyoto baze podataka

Tablica iznad prikazuje vrijednosti pojedinih geomagnetskih pokazatelja koji su ključni za određivanje dinamike napredovanja oluje kroz promatrani period vremena (DOY 249 - 253). Na temelju ove tablice opisanu su grafički prikazi promatranih geomagnetskih pokazatelja.

Grafikon 3. Grafički prikaz Kp/ap indeksa

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s GFZ Potsdam baze podataka

Graf iznad prikazuje kretanje trosatne dnevne vrijednosti Kp indeksa u promatranom periodu (DOY 249 – 253). Graf je prikazan kao funkcija vremena i intenziteta Kp indeksa, koji je prikazan kroz ap indeks. Tabličnim pretvaranjem kako je navedeno u poglavlju 5. (geomagnetski indeksi), napravljena je konverzija Kp indeksa koji se prikazuje kao vrijednost na skali između 0 i 9 u ap indeks, koji predstavlja linearanu vrijednost promjene magnetskog polja. Iz grafa je vidljiv nagli porast ap indeksa s 12 nT-a (Kp = 3-) na 207 nT-a (Kp = 8) s prijelaza 7. na 8. Rujan. U periodu oluje 8. Rujna vidljiv je određeni pad ap indeksa na 32 nT-a (Kp = 4+) i zatim strmi porast na maksimalnu vrijednost promatranog perioda istraživanja koja iznosi 236 nT-a (Kp = 8+). Nadalje vidljiv je određen postepeni pad vrijednosti Kp/ap indeksa gdje 9. Rujna vrijednost ap indeksa dostiže vrijednost 0 (Kp = 0). Iz grafičkog prikaza vidljiva je određena dinamičnost kretanja Kp/ap indeksa za period vremena 8. Rujan dan geomagnetske oluje, gdje su vidljiva dva vrhunca

vrijednosti. Zbog utjecaja na horizontalnu komponentu geomagnetskog polja na područja koja se nalaze između 48° i 63° geografske širine, utjecaja *Kp/ap* indeksa na INTERMAGNET-ovu stanicu Lonsko Polje je analiziran u sljedećim poglavljima.

Grafikon 4. Grafički prikaz Ap indeksa

Graf iznad prikazuje 24-satne srednje vrijednosti Kp indeksa u promatranom periodu (DOY 249 – 253). Iz grafa je vidljivo postepeno povećanje vrijednosti Ap indeksa u periodu 8. Rujna kad Ap indeks iznosi 8 i 9. Rujna kada se Ap indeks povećava na vrijednost 36. Za vrijeme dana geomagnetske oluje 8. Rujna Ap indeks naglo raste na vrijednost 106 i zatim dan nakon oluje pada na vrijednost 3. Iz grafičkog prikaza i usporedbe s Kp/ap indeksom može se zaključiti da je intenzitet djelovanja geomagnetske oluje vidljiv kroz veći dio dana 8. Rujna.

Izvor:Izrada studenta u programu Rstudio na temelju preuzetih podataka s GFZ Potsdam baze podataka

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s GFZ Potsdam baze podataka

Graf iznad prikazuje satne vrijednosti aktivnosti auroralnog mlaza prikazanog kroz *Ae* indeks u promatranom periodu (DOY 249 – 253). Iz grafa je vidljivo da postoje tri vrhunca vrijednosti *Ae* indeksa gdje je prvi 7. Rujna (dan prije oluje) kad vrijednost *Ae* indeksa naglo raste sa 126 na 1041. Zatim ponovo pada na vrijednosti od 36 i na dan oluje u jutarnjim satima drugi vrhunac gdje je vidljiv strmi porast na vrijednost od 1157. Do 10 sati ujutro vrijednosti padaju do 187 i zatim slijedi treći vrhunac gdje je vidljiv strm porast vrijednosti na 1442. Nadalje vidljiv je određen postepeni pad vrijednosti *Ae* indeksa kada 10. Rujna vrijednosti padaju na minimalni 3. Kretanje *Ae* indeksa kroz promatrani period izvrsno prikazuje dinamično kretanje geomagnetske oluje i njen utjecaj na horizontalnu komponentu geomagnetskog polja polarnih područja dan prije oluje i na dan oluje. U sljedećim poglavljima analiziran je utjecaj *Ae* indeksa na INTERMAGNET-ovu stanicu Hornsund.

Grafikon 6. Grafički prikaz Dst indeksa

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s World Data Center for Geomagnetism, Kyoto baze podataka

Graf iznad prikazuje satne vrijednosti geomagnetske varijacije prikazanog kroz Dst indeks u promatranom periodu (DOY 249 – 253). Iz grafa je vidljivo tipično dinamično napredovanje geomagnetske (ionosferske) oluje, gdje je vidljiva početna faza oluje u jutarnjim satima 7. Rujna. *Dst* indeks poprima pozitivne vrijednosti (52 nT-a) zbog kompresije magnetosfere uslijed povećanja dinamičkog tlaka Sunčevog vjetra zbog početnog udarnog vala. Zatim slijedi glavna faza oluje u jutarnjim satima 8. Rujna gdje *Dst* pada na vrijednost od -122 *nT*-a. Nakon velikog pada slijedi povećanje *Dst* indeksa (kratkotrajni oporavak) do -44 *nT*-a i zatim ponovni pad u predvečernjim satima *Dst* indeksa na -109 *nT*-a. Vidljivo je iz grafa da faza oporavka započinje s početkom 9. Rujna gdje se *Dst* indeks vraća na početne vrijednosti odnosno vrijednosti geomagnetskog mirnog vremena. U konačnici priloženoga je dano zaključiti da geomagnetska oluja 8. Rujna ima dva velika pada *Dst* vrijednosti. Padovi označavaju veliki unos energije unutar prstenaste struje što u konačnici ima učinak na horizontalnu komponentu geomagnetskog polja u području oko ekvatora. U sljedećim poglavljima analiziran je utjecaj *Dst* indeksa na INTERMAGNET-ove stanice Ascension Island i Hermanus.

7.2. ANALIZA KOMPONENTI GEOMAGNETSKOG POLJA

Unutar ovog poglavlja analizirane su komponente jakosti geomagnetskog polja za promatrane INTERMAGNET-ove stanice. Analiza pojedine stanice je podijeljena na analizu horizontalne i vertikalne komponente s grafičkim prikazima u vremenskom nizu i histogramima. Glavni cilj analize je utvrditi u kojoj je mjeri stvoren geomagnetski poremećaj na različitim geografskim širinama promatran kroz komponente geomagnetskog polja.

INTERMAGNET		Minimum	Prvi Kvartil	Medijan	Srednja	Treći	Maksimum
Stanice					vrijednost	Kvartil	
	Х	7185,7	7732,875	7759,7	7751,332	7803,5	8107,2
Hornsund	Y	1000,1	1121,475	1146	1152,964	1176,725	1551,6
	Ζ	770,5	54016,18	54074,95	51612	54115,03	55147,7
Lonsko Polje	Χ	22198,5	22313,98	22333,7	22332,76	22361	22445,1
	Y	1536	1600,2	1608,6	1611,223	1622,925	1758,1
	Ζ	42278,9	42320,6	42325,5	42328,17	42334	42413,1
Ascension Island	Χ	19694,8	19807,9	19831,7	19829,6	19863,6	19902,7
	Y	-5353,5	-5295,3	-5287,45	-5289	-5280	-5252,6
	Ζ	-19971,1	-19966,5	-19962,8	-19961,9	-19959,5	-19942,9

Tablica 7. Prikaz vrijednosti jakosti geomagnetskih komponenti (izraženo u nT)

Hermanus	Х	9404,3	9517,9	9536	9535,312	9561,2	9612,1
	Y	-4677	-4632	-4624,6	-4622,74	-4613,9	-4524,4
	Ζ	-23289	-23174,6	-23169	-23171,7	-23163	-23128,9

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Tablica iznad prikazuje vrijednosti geomagnetskih komponenti pojedinih INTERMAGNET-ovih stanica koje su potrebne za određivanje dinamičkog pritiska Sunčevog vjetra tj. MMP-a kroz promatrani period vremena (DOY 249 - 253). Na temelju ove tablice opisani su grafički prikazi i histogrami promatranih komponenti geomagnetskog polja.

Grafikon 7. Grafički prikazi horizontalne komponente (X i Y) stanice Hornsund

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Grafovi iznad prikazuju jednominutne vrijednosti jakosti X i Y geomagnetske komponente u promatranom periodu (DOY 249 – 253) za INTERMAGNET-ovu stanicu Hornsund koja se nalazi u visokim geografskim širinama (engl. high latitudes). Iz oba prikaza je vidljivo da postoje određene varijacije geomagnetskih komponenti u periodu prije geomagnetske oluje (6. i 7. Rujan) i na sam dan (8. Rujan). Promatrajući srednje vrijednosti obje komponente može se zaključiti da u periodu prije oluje postoje manje varijacije vrijednosti. U slučaju X komponente varijacije su u rasponu od 600 nT dok kod Y komponente varijacije su u rasponu od 500 nT. Za dan geomagnetske oluje vidljive su strme i nagle promjene vrijednosti kod obje komponente. X komponenta u jutarnjim satima doživljava nagli pad vrijednosti na minimalnih 7185,7 nT, zatim kroz jutro se penje na maksimalnih 8107,2 nT, a u popodnevnim i predvečernjim satima vidljiva su dva ponovan strma pada vrijednosti. Y komponenta u ranim jutarnjim satima doživljava nagli i strmi porast vrijednosti na maksimalnih 1551,6 nT, u jutarnjim satima vrijednosti se normaliziraju i u popodnevnim satima doživljavaju nagli i strmi pad vrijednosti na minimalne gdje navečer u periodu nema zabilježenih opažanja. U periodu nakon oluje vidljiv je oporavak vrijednosti na normalne. Na temelju promatranog se da zaključiti da na dan geomagnetske oluje su se pojavile dvije strme promjene vrijednosti (1. ranojutarnji sati i 2. popodnevni sati) gdje je u popodnevnim satima vidljiv znatan pad vrijednosti obje komponente što upućuje na znatni utjecaj geomagnetske aktivnosti na horizontalnu komponentu.

Grafikon 8. Grafički prikazi vertikalne komponente (Z) stanice Hornsund

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Graf iznad prikazuje jednominutne vrijednosti jakosti Z geomagnetske komponente u promatranom periodu (DOY 249 – 253). Iz prikaza je vidljivo da su varijacije vertikalne komponente geomagnetskog polja u odnosu na horizontalne bile znatno veće. Raspon varijacija prije geomagnetske oluje i za vrijeme geomagnetske oluje je bio preko 50 000 nT-a. Najveće varijacije su vidljive na dan prije oluje i za dan oluje gdje su vidljiva dva duža perioda pada vrijednosti okomite komponente s 54 000 nT na 770,5 nT. Na temelju promatranog se može zaključiti da je utjecaj geomagnetske oluje bio najveći na vertikalnu komponentu zbog kompresije geomagnetskog polja uslijed djelovanja KIM-a.

Grafikon 9. Histogrami komponenti geomagnetskog polja stanice Hornsund

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Histogrami iznad prikazuju učestalost pojavljivanja vrijednosti komponenti geomagnetskog polja INTERMAGNET-ove stanice Hornsund. U slučaju horizontalne komponente (X i Y) histogrami prikazuju distribuciju podataka s nagibom (u desnu i lijevu stranu) s određenim stršećim vrijednostima međutim u slučaju okomite komponente distribucija je također s nagibom (u desnu stranu), ali s većim brojem stršećih vrijednosti (par stotina). Vidljivo je da se stršeće vrijednosti odnose na varijacije komponenti geomagnetskog polja uslijed djelovanja geomagnetske oluje. U slučaju promatrane stanice Hornsund geomagnetska oluja je imala najveći učinak na okomitu komponentu geomagnetskog polja.

Jakost Y komponente [nT], DOY 249-253/2017

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Grafovi iznad prikazuju jednominutne vrijednosti jakosti X i Y geomagnetske komponente u promatranom periodu (DOY 249 - 253) za INTERMAGNET-ovu stanicu Lonsko Polje koja se nalazi u umjerenim geografskim širinama (engl. midlatitudes). Varijacije horizontalne komponente geomagnetskog polja su vidljive u periodu jutarnjih sati, 8. Rujna na dan geomagnetske oluje, međutim u periodu prije oluje i nakon oluje nisu zamječena neka veća odstupanja od srednje vrijednosti. Raspon Varijacije obje komponente je između 200 - 250 nT. S prijelaza 7. Rujna na 8. Rujan vidljiva je promjena gdje X i Y geomagnetska komponenta doživljavaju određenu porast vrijednosti gdje obje komponente doživljavaju svoj maksimum vrijednosti (X = 22445,1 nT i Y=1758,1 nT). Nakon početnog porasta slijedi povratak vrijednosti na normalne i zatim drugi poremećaj vrijednosti u popodnevnim satima gdje obje horizontalne komponente doživljavaju pad vrijednosti. Vrijednosti X geomagnetske komponente padaju na minimalnih 22198,5 nT, dok vrijednosti Y geomagnetske komponente padaju na približno 1550 nT. U večernjim satima vidljiv je određen nestabilan porast vrijednosti. U periodu poslije oluje primarno s prelaska 8. Rujna na 9. Rujan vidljiva je normalizacija vrijednosti horizontalne komponente gdje vrijednosti ne variraju u kratkim periodima vremena. Na temelju promatranog se da zaključiti da na dan geomagnetske oluje su se pojavile dvije promjene vrijednosti (1. ranojutarnji sati i 2. popodnevno-večernji sati), međutim varijacije horizontalne komponente nisu bile uveliko značajne.

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Graf iznad prikazuje jednominutne vrijednosti jakosti Z geomagnetske komponente u promatranom periodu (DOY 249 - 253) za INTERMAGNET-ovu stanicu Lonsko Polje. Iz prikaza je vidljivo da je raspon varijacija okomite geomagnetske komponente 135 *nT*. U ranojutarnjim satima 8. Rujna na dan geomagnetske oluje zabilježen je pad okomite geomagnetske komponente na minimalnih 42278,9 *nT*. U jutarnjim satima vidljiv je oporavak vrijednosti na normalne i zatim u popodnevnim satima okomita komponenta doživljava nagli i strmi porast na maksimalnu vrijednost od 42413,1 *nT*. U večernjim satima vrijednosti opadaju, te u periodu poslije oluje se normaliziraju. Iz prikaza se da zaključiti da su najveće varijacije okomite komponente bile u popodnevnim i predvečernjim satima.

Grafikon 12. Histogrami komponenti geomagnetskog polja stanice Lonsko Polje

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Histogrami iznad prikazuju učestalost pojavljivanja vrijednosti komponenti geomagnetskog polja INTERMAGNET-ove stanice Lonsko Polje. U slučaju horizontalne komponente *X* histogram prikazuju određenu distribuciju podataka, gdje postoje dva intervala vrijednosti oko kojih se većina pojavljuje i ako se usporedi s grafom vremenskog niza vrijednosti *X* komponente vidljivo je da ta dva intervala prikazuju period prije oluje (učestalost preko 1000) i period nakon oluje (učestalost približno 800). Iz vidljivog se da zaključiti da se *X* geomagnetska komponenta vremenski duže "oporavljala". U slučaju horizontalne komponente *Y* geomagnetskog polja vidljiva je distribucija podataka s nagibom (u lijevu stranu) i s određenim stršećim vrijednostima međutim u slučaju okomite komponente distribucija podataka je slična horizontalnoj *X* komponenti gdje su također vidljiva dva skupa vrijednosti oko kojih se većina pojavljuje, što ukazuje na duži period oporavka okomite komponente zbog utjecaja geomagnetske oluje. Također je vidljivo da stršeće vrijednosti kod svih komponenti prikazuju utjecaj geomagnetske oluje.

Grafikon 13. Grafički prikazi horizontalne komponente (X i Y) stanice Ascension Island

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Grafovi iznad prikazuju jednominutne vrijednosti jakosti X i Y geomagnetske komponente u promatranom periodu (DOY 249 – 253) za INTERMAGNET-ovu stanicu Ascension Island koja se nalazi u nižim (ekvatorskim) geografskim širinama (engl. *low latitudes*). Iz prikaza je vidljivo da varijacije horizontalne geomagnetske komponente u periodu prije oluje nisu značajne gdje je raspon varijacije obje komponente do 8. rujna bio 50 *nT*. Na dan 8. Rujan geomagnetske oluje vidljive su određene varijacije gdje u ranojutarnjim satima obje komponente doživljavaju određeni poremećaj, odnosno pad vrijednosti. Do popodnevnih sati vrijednosti se normaliziraju i zatim je vidljiv drugi poremećaj vrijednosti u popodnevno-večernjim satima gdje obje horizontalne komponente doživljavaju ponovni pad vrijednosti. U periodu nakon oluje vidljivo je stabiliziranje vrijednosti obje komponente geomagnetskog polja. Iz prikaza je vidljivo da postoje dva poremećaja vrijednosti 8. Rujna na dan geomagnetske oluje, slično kao i kod prethodnih stanica. Horizontalna komponenta X u odnosu na komponentu Y je imala veće varijacije na dan geomagnetske oluje.

Grafikon 14. Grafički prikazi vertikalne komponente (Z) stanice Ascension Island

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Graf iznad prikazuje jednominutne vrijednosti jakosti Z geomagnetske komponente u promatranom periodu (DOY 249 – 253) za INTERMAGNET-ovu stanicu Ascension Island. Iz prikaza je vidljivo da okomita komponenta ima raspon varijacije vrijednosti 31 nT što upućuje da geomagnetska oluja u svom periodu trajanja nije imala veliki učinak na vertikalnu Z geomagnetsku komponentu (sjeverne orijentacije). Vidljiv je određen poremećaj u periodu dana prije oluje gdje vertikalna geomagnetska komponenta doživljava određeno povećanje vrijednosti u odnosu na uobičajno smanjenje vrijednosti za vrijeme popodnevnih sati. U promatranom periodu geomagnetska oluja nije imala značajan učinak na vertikalnu komponentu geomagnetskog polja.

Grafikon 15. Histogrami komponenti geomagnetskog polja stanice Ascension island

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Histogrami iznad prikazuju učestalost pojavljivanja vrijednosti komponenti geomagnetskog polja INTERMAGNET-ove stanice Ascension Island. U slučaju horizontalne geomagnetske komponente histogram X komponente prikazuje distribuciju podataka gdje većine vrijednosti se koncentrira oko dva intervala vrijednosti, dok u slučaju Y komponente vidljiva je distribucija podataka s nagibom (u desnu stranu). Uspoređivanjem histograma i vremenskog niza horizontalne komponente vidljivo je, da je X geomagnetska komponenta doživjela veće varijacije u odnosu na Y geomagnetsku komponentu i također period normalizacije vrijednosti je veći kod X komponente u odnosu na Y komponentu. U slučaju vertikalne geomagnetske komponente vidljiva je određena distribucija podataka, gdje ako se usporedi s vremenskim nizom vrijednosti Z geomagnetske komponente, vidljivo je da geomagnetska oluja nije imala utjecaj na minimalne ni maksimalne vrijednosti komponente nego na vrijednosti koje se nalaze između (7. Rujan).

Grafikon 16. Grafički prikazi horizontalne komponente (X i Y) stanice Hermanus

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Grafovi iznad prikazuju jednominutne vrijednosti jakosti X i Y geomagnetske komponente u promatranom periodu (DOY 249 – 253) za INTERMAGNET-ovu stanicu Hermanus koja se nalazi u umjerenim geografskim širinama (engl. *midlatitudes*) južne polutke. Iz oba prikaza je vidljivo da poremećaj horizontalne geomagnetske komponente započinje u periodu prije geomagnetske oluje (7.Rujan). U ranojutarnjim satima 8. Rujna obje horizontalne komponente doživljavaju određen porast vrijednosti te zatim nagli pad. Kroz jutarnje sate vrijednosti se oporavljaju na normalne i zatim je primjetan ponovni, ali veći pad vrijednosti u popodnevnim satima, gdje obje komponente doživljavaju svoj minimum. Zatim u večernjim satima slijedi oporavak obje komponente s minimalnim varijacijama polja. U periodu poslije oluje vidljiva je normalizacija vrijednosti horizontalne geomagnetske komponente. Iz prikaza je vidljivo da u periodu trajanja

geomagnetske oluje slično kao i kod ostalih stanica, horizontalna geomagnetska komponenta doživljava dva veća poremećaja vrijednosti kroz dan.

Grafikon 17. Grafički prikazi vertikalne komponente (Z) stanice Hermanus

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Graf iznad prikazuje jednominutne vrijednosti jakosti Z geomagnetske komponente u promatranom periodu (DOY 249 – 253) za INTERMAGNET-ovu stanicu Hermanus. Iz prikaza je vidljivo da manje varijacije okomite komponente započinju također kao i u slučaju horizontalne komponente u periodu prije geomagnetske oluje (7. Rujan). U ranojutarnjim satima 8. Rujna okomita geomagnetska komponenta doživljava manji pad vrijednosti. Zatim kroz jutarnje sate vrijednosti se oporavljaju, gdje u popodnevnim satima ponovno doživljavaju manji pad koji je popraćen sa strmim povećanjem vrijednosti na maksimalnih -23128,9 *nT*. Nakon naglog povećanja vrijednosti, slijedi postupno smanjivanje u popodnevnim i večernjim satima s određenim manjim varijacijama komponente. U periodu nakon oluje vidljiva je normalizacija vrijednosti okomite geomagnetske komponente. Iz prikaza se može zaključiti da okomita geomagnetska komponenta je doživjela jedan veći poremećaj vrijednosti u popodnevnim satima 8. Rujna.

Grafikon 18. Histogrami komponenti geomagnetskog polja stanice Hermanus

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s INTERMAGNET-ove baze podataka

Histogrami iznad prikazuju učestalost pojavljivanja vrijednosti komponenti geomagnetskog polja INTERMAGNET-ove stanice Hermanus. U slučaju horizontalne geomagnetske komponente, histogram *X* komponente prikazuje distribuciju podataka gdje se većina vrijednosti to jest uglavnom veće vrijednosti se koncentriraju oko dva intervala vrijednosti, dok u slučaju *Y* komponente vidljiva je distribucija podatak s nagibom (u lijevu stranu stranu). Uspoređujući vremenske nizove vrijednosti horizontalnih komponenti i histograme, kod oba slučaja može se zaključiti da stršeće vrijednosti predstavljaju minimume i maksimume, čiji je glavni uzrok utjecaj geomagnetske oluje 8. Rujna. U slučaju okomite geomagnetske komponente prikazana je distribucija podataka s nagibom u desnu stranu gdje također stršeće vrijednosti predstavljaju maksimume koje je uzrokovala geomagnetska oluja.

7.3. ANALIZA ODSTUPANJA POLOŽAJNIH KOORDINATA

U ovom poglavlju analizirana su položajna odstupanja IGS stanica. Analiza je prikazana uz pomoć grafičkih prikaza u vremenskom nizu za svaku stanicu. Glavni cilj analize je utvrditi u kojoj su mjeri odstupale položajne koordinate u periodu između 6. i 10. Rujna primarno promatrajući 8. Rujan (dan geomagnetske oluje) za sjevernu polutku (tri stanice) i južnu polutku (jedna stanica).

IGS		Minimum	1.Kvartil	Medijan	Srednja	3.Kvartil	Maksimum	Standardna
Stanice					vrijednost			devijacija
	φ	-1,2275	1,1622	1,7181	1,6640	2,1330	4,9113	0,7180
Ny-Alesund	λ	-2,3288	-0,4855	0,02771	-0,0053	0,4780	2,6246	0,7298
	h	-17,4563	-4,7217	-3,2777	-3,2609	-1,7653	9,5979	2,4952
Padova	φ	-2,72444	0,4038	0,8298	0,8644	1,4067	3,4532	0,8204
	λ	-2,5747	-0,3475	-0,0271	-0,0341	0,3034	1,8281	0,5364
	h	-4,1538	1,01075	2,2523	2,4378	3,9516	11,2919	2,1224
Libreville	φ	-4,6707	0,3280	0,9934	0,9363	1,7370	11,9822	1,3472
	λ	-6,6619	-2,9934	-2,2841	-2,3819	-1,7536	0,1398	0,8825324
	h	-70,3724	-2,5944	-1,0786	-1,0428	0,3633	21,9295	3,3946
Hermanus	φ	-2,4631	-0,2492	0,2389	0,3428	0,8246	3,9102	0,9538
	λ	-2,9527	-0,7822	-0,4308	-0,4882	-0,1163	1,6955	0,5988
	h	-5,3562	0,493	1,5671	1,5019	2,4796	10,0105	1,7350

Tablica 8. Prikaz vrijednosti odstupanja položajnih koordinata (izraženo u m)

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s IGS-ove baze podataka

Tablica iznad prikazuje vrijednosti položajnih odstupanja pojedinih IGS-ovih stanica koje su promatrane kroz period vremena (DOY 249 - 253). Na temelju ove tablice opisani su grafički prikazi.

Grafikon 19. Prikaz odstupanja položajnih koordinata stanice Ny-Alesund

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s IGS-ove baze podataka

Graf iznad prikazuju jednominutne vrijednosti odstupanja položajnih koordinata u promatranom periodu (DOY 249 – 253) za IGS-ovu stanicu Ny-Alesund, koja se nalazi na visokim geografskim širinama. Iz prikaza je vidljivo da su najveća odstupanja nadmorske visine, gdje standardna devijacija iznosi 2,4952 m, dok kod geografske širine i geografske dužine vidljiva su manja odstupanja, gdje je standardna devijacija malo iznad 0,7 m. Promatrajući odstupanja nadmorske visine vidljive su tri značajne promjene: prva 7. Rujna u ranojutarnjim satima, gdje je vidljiv nagli skok vrijednosti na približno 8 m te nagli pad na skoro -13 m, zatim slijedi druga promjena vrijednosti s 8. na 9. Rujan, gdje odstupanja dostižu maksimalnih 9,5979 m i treća značajna promjena u ranojutarnjim satima 10. Rujna, gdje se vrijednosti naglo povećavaju na 7 m i zatim strmo padaju na minimalnih -17,4563 m.

Grafikon 20. Prikaz odstupanja položajnih koordinata stanice Padova

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s IGS-ove baze podataka

Graf iznad prikazuje jednominutne vrijednosti odstupanja položajnih koordinata u promatranom periodu (DOY 249 – 253) za IGS-ovu stanicu Padova, koja se nalazi na srednjim geografskim širinama sjeverne polutke. Iz prikaza je vidljivo da su najveća odstupanja nadmorske visine gdje standardna devijacija iznosi 2,1224 m, dok kod geografske širine iznosi 0,8204 m i geografske dužine iznosi 0,5364 m. Uzimajući u obzir da nadmorska visina ima standardno najveća odstupanja u globalu no nema nekih većih odstupanja položajnih koordinata. Promatrajući period prije oluje, oluju i period poslije oluje, vidljivo je da u periodu poslije oluje 9. Rujna (u popodnevnim satima - istodobno odstupanje svih koordinata) i 10. Rujna (u ranojutarnjim satima - maksimalno odstupanje nadmorske visine 11,2919 m) veća su odstupanja položajnih koordinata u odnosu na prethodne periode.

Grafikon 21. Prikaz odstupanja položajnih koordinata stanice Libreville

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s IGS-ove baze podataka

Graf iznad prikazuje jednominutne vrijednosti odstupanja položajnih koordinata u promatranom periodu (DOY 249 – 253) za IGS-ovu stanicu Libreville, koja se nalazi na nižim geografskim širinama. Iz prikaza je vidljivo da postoje ogromna odstupanja nadmorske visine, gdje standardna devijacija iznosi 3,3946 *m* i značajna odstupanja geografske širine gdje standardna devijacija iznosi 1,3472 *m*. Odstupanja nadmorske visine su bila značajna u prelaznim periodima (s noći na jutro) promatranih dana s tim da na dan 8. Rujna (geomagnetska oluja) zamijećena su najveća odstupanja na minimalnih -70,3724 *m* i maksimalnih 21,9295 *m*. Odstupanja geografske širine najznačajnija su bila na prijelazu 7. na 8. Rujna gdje su vidljiva odstupanja od 11,9822 *m*. Uspoređujući s prethodnim odstupanjima navedenih IGS stanica vidljivo je da su u području ekvatora najveća odstupanja položajnih koordinata.

Grafikon 22. Prikaz odstupanja položajnih koordinata stanice Hermanus

Izvor: Izrada studenta u programu Rstudio na temelju preuzetih podataka s IGS-ove baze podataka

Graf iznad prikazuje jednominutne vrijednosti odstupanja položajnih koordinata u promatranom periodu (DOY 249 – 253) za IGS-ovu stanicu Hermanus, koja se nalazi na srednjim geografskim širinama međutim južne polutke. Iz prikaza je vidljivo da su najveća odstupanja nadmorske visine, čija je standardna devijacija iznosila 1,7350 m i manjim dijelom odstupanja geografske širine, čija je standardna devijacija iznosila 0,9538 m. Promatrajući prikaz vidljivo je da nije bilo nekih značajnijih odstupanja u koordinatama, međutim u periodu 8. Rujna vidljivo je da su se kroz poslijepodnevne sate pojavile određene promijene, gdje je vidljivo određeno povećanje odstupanja koordinata u rasponu od -3 m do 7 m.

7.4. ANALIZA KORELACIJE GEOMAGNETSKIH UČINAKA I ODSTUPANJA POLOŽAJNIH KOORDINATA

U ovom poglavlju analizirana je korelacija između komponenti geomagnetskog polja INTERMAGNET-ovih stanica (X, Y, Z), geomagnetskih pokazatelja (Dst, Ae, Kp, i Ap) i odstupanja položajnih koordinata promatranih IGS stanica. Korelacija je prikazana pomoću korelacijske matrice zbog pojednostavljenja prikaza. Cilj analize je utvrdi utjecaj geomagnetskih učinaka na GPS pozicioniranje u promatranom periodu 6. do 10. Rujna 2017. godine.

Slika 20. Prikaz korelacijske matrice visokih geografskih širina

Izvor: Izrada studenta u programu Rstudio

Slika prikazuje korelacijsku matricu, unutar koje se nalaze koordinatna položajna odstupanja IGS stanice Ny-Alesund, komponente geomagnetskog polja INTERMAGNET stanice Hornsund i geomagnetskih pokazatelja, međutim primarno se obraća pozornost na pokazatelj auroralnog mlaza (Ae). Iz prikaza je vidljivo da pokazatelj auroralnog mlaza ima pozitivnu značajnu korelaciju s X komponentom geomagnetskog polja, međutim nema nikakvu korelaciju s horizontalnom Ykomponentom. U slučaju korelacije između odstupanja položajnih koordinata i komponenti geomagnetskog polja vidljiv je manji stupanj korelacije. U slučaju odstupanja geografske širine vidljiva je slaba negativna ili skoro nikakva korelacija s X i Z geomagnetskim komponentama i slaba negativna korelacija s Y geomagnetskom komponentom, kod odstupanja geografske dužine (najstabilnije položajne koordinate) vidljiva je slaba skoro nikakva korelacija s X i Zgeomagnetskim komponentama i značajna pozitivna korelacija s Y geomagnetskom komponentom

Slika 21. Prikaz korelacijske matrice umjerenih geografskih širina (sjeverne polutke) Izvor: Izrada studenta u programu Rstudio

Slika prikazuje korelacijsku matricu unutar koje se nalaze koordinatna položajna odstupanja IGS stanice Padova, komponente geomagnetskog polja INTERMAGNET stanice Lonsko Polje i geomagnetskih pokazatelja, međutim se primarno obraća pozornost na *Kp* i *Ap* pokazatelje. Iz prikaza je vidljivo da postoji značajna pozitivna i negativna korelacija između horizontalnih komponenti *X* i *Y* geomagnetskog polja i *Kp/Ap* pokazatelja, gdje *Ap* pokazatelj izvrsno opisuje dinamiku kretanja geomagnetskog polja na dan geomagnetske oluje 8. Rujna. U slučaju korelacije između odstupanja položajnih koordinata i komponenti geomagnetskog polja, vidljiv je određen stupanj korelacije, gdje u slučaju odstupanja geografske širine i komponenti geomagnetskog polja vidljiva je slaba ili skoro nikakva korelacija. Dok kod odstupanja geografske dužine vidljiva je određena pozitivna korelacija s horizontalnom komponentom. U slučaju odstupanja nadmorske visine vidljiva je značajna negativna korelacija s horizontalnom komponentom dok s vertikalnom komponentom vidljiva je određena pozitivna korelacija.

Slika 22. Prikaz korelacijske matrice nižih geografskih širina

Izvor: Izrada studenta u programu Rstudio

Slika prikazuje korelacijsku matricu unutar koje se nalaze koordinatna položajna odstupanja IGS stanice Libreville, komponente geomagnetskog polja INTERMAGNET stanice Ascension Island i geomagnetskih pokazatelja, međutim primarno se obraća pozornost na *Dst* pokazatelj. Iz prikaza je vidljivo da horizontalne komponente geomagnetskog polja imaju iznimno visoku pozitivnu (u slučaju *X* komponente) i značajnu negativnu (u slučaju *Y* komponente) korelaciju. U slučaju korelacije između odstupanja položajnih koordinata i komponenti geomagnetskog polja vidljiv je također određen stupanj korelacije, gdje u slučaju odstupanja geografske širine i komponenti geomagnetskog polja vidljiva je značajna negativna korelacija s *Y* horizontalnom komponentom i slaba negativna korelacija sa *Z* vertikalnom komponentom, dok kod odstupanja geografske dužine vidljiva je određena pozitivna korelacija s *X* horizontalnom komponentom i slaba negativna korelacija sa *Z* vertikalnom komponentom. U slučaju odstupanja nadmorske visine gdje su uočena najveća odstupanja od svih promatranih stanica, vidljiva je slaba negativna korelacija s horizontalnom komponentom, dok s vertikalnom komponentom vidljiva je značajna pozitivna korelacija.

Slika 23. Prikaz korelacijske matrice srednjih geografskih širina (južna polutka) Izvor: Izrada studenta u programu Rstudio

Slika prikazuje korelacijsku matricu unutar koje se nalaze koordinatna položajna odstupanja IGS stanice Hermanus, komponente geomagnetskog polja INTERMAGNET stanice Hermanus i geomagnetskih pokazatelja, međutim primarno se obraća pozornost na Dst pokazatelj zbog geografskog položaja promatranih stanica. Kao i u prethodnom promatranju iz prikaza je vidljivo da horizontalne komponente geomagnetskog polja imaju iznimno visoku pozitivnu (u slučaju Xkomponente) i značajno negativnu (u slučaju Y komponente) korelaciju. U slučaju korelacije između odstupanja položajnih koordinata i komponenti geomagnetskog polja vidljiv je određen stupanj korelacije gdje u slučaju odstupanja geografske širine i komponenti geomagnetskog polja postoji slaba, međutim može se okarakterizirati kao nikakva korelacija, dok kod odstupanja geografske dužine vidljiva je određena značajna pozitivna i negativna korelacija horizontalnim komponentama i značajna pozitivna korelacija s Z vertikalnom komponentom. U slučaju odstupanja nadmorske visine, vidljiva je također određena pozitivna korelacija s horizontalnom komponentom dok s vertikalnom komponentom nema korelacija.

8. REZULTATI ISTRAŽIVANJA I RASPRAVA

Iz prethodnog poglavlja može se zaključiti, da je geomagnetska oluja imala određen utjecaj na sve promatrane varijable. Korelacijskom analizom napravljeno je ispitivanje veze s jedne strane geomagnetskih parametara i s druge strane odstupanja položajnih koordinata promatranih IGS stanica. Korelacijska analiza također izvrsno prikazuje ponašanje promatranih varijabli, kada međusobno djeluju jedna na drugu. Glavni cilj korelacijske analize je potvrda postavljene hipoteze gdje će se u nastavku poglavlja iznijeti rezultati istraživanja.

Temeljni cilj istraživanja je bio utvrditi utjecaj geomagnetskih učinaka na određivanje položaja sustavom GPS u periodu poremećaja svemirskog vremena tj. utvrditi dinamično kretanje geomagnetske oluje od polova prema ekvatoru te utjecaj na određivanje položaja GPS sustavom u promatranom periodu. Istraživanje je vršeno nad različitim geografskim širinama zbog kvalitetnijeg razumijevanja cijelog procesa. Da bi se stekao što bolji uvid djelovanja geomagnetske oluje na odstupanja položajnih koordinata IGS stanica izvršeno je posljednje ispitivanje korelacijskom analizom. Ispitivanje obuhvaća s jedne strane mirni dan (6. rujan) i s druge strane dan oluje tj. promatrana dva dana zbog što kvalitetnijeg uzorka (7. i 8. Rujan).

Slika 24. Prikaz korelacijske matrice mirnog promatranog perioda

Izvor: Izrada studenta u programu RStudio

Slika 25. Prikaz korelacijske matrice perioda dana geomagnetske oluje

Izvor: Izrada studenta u programu RStudio

Uspoređujući korelacijske matrice perioda mirnog dana i perioda dva dana geomagnetske oluje vidljivo je da postoje velike različitosti. Geomagnetski pokazatelji izvrsno prikazuju dinamiku kretanja geomagnetske oluje, gdje je vidljiv veći stupanj korelacije na svim promatranim geografskim širinama, a pogotovo u području ekvatora (*Dst* indeks) za periode dana (7. i 8. Rujan) geomagnetske oluje u odnosu na promatrani mirni dan (6. Rujan). Korelacija između odstupanja položajnih koordinata promatranih stanica i komponenti geomagnetskog polja za pripadajuće promatrane stanice pokazuje također znatnu različitost ponajviše u polarnim predjelima gdje je geomagnetsko polje doživjelo ogroman pad vrijednosti posebno u vertikalnoj komponenti,

međutim odstupanja položajnih koordinata nisu doživjela značajne varijacije i područjima oko ekvatora i blizine ekvatora gdje je vidljiv znatan utjecaj geomagnetskog polja (horizontalne i vertikalne komponente) na odstupanje položajnih koordinata.

Iz rezultata istraživanja da se zaključiti da dinamično kretanje geomagnetske oluje 8. Rujna 2017. godine se poklapa s dinamičnim promjenama unutar geomagnetskih pokazatelja i komponenti geomagnetskog polja kroz različite geografske širine što ukazuje na stvarni poremećaj magnetskog polja Zemlje. Geomagnetski pokazatelji izvrsno ukazuju na dinamiku cjelokupnog procesa punjenja i prijenosa energije uzrokovanih poremećajima u MMP-u, u ovom slučaju IKIM gdje se stvaraju električna polja koja generiraju električne struje koje ubrizgavaju plazmu u područja prstenaste struje koja stvara elektronski radijacijski pojas. Geomagnetske komponente promatranih stanica također prikazuju dinamične varijacije uslijed djelovanja MMP-a na geomagnetsko polje zemlje, gdje se najviše vide promjene u polarnim dijelovima (kompresija Z verikalne geomagnetske komponente, pad od 55000 nT-a) zbog otvorenih magnetskih silnica geomagnetskog polja. Odstupanje položajnih koordinata promatranih stanica također se poklapa s cijelom dinamikom geomagnetskih tj. ionosferskih oluja gdje su određena odstupanja vidljiva na visokim geografskim širinama, manja odstupanja su vidljiva na srednjim geografskim širinama, a najveća odstupanja su vidljiva u području nižih geografskih širina u blizini ekvatora. Cijeli proces odgovara dinamici prenosa slobodnih elektrona i molekularnih plinova od polova prema ekvatoru putem struja magnetskih silnica i atmosferskih vjetrova gdje se u području ekvatora vertikalni profil ionosfere povećava i samim tim odstupanja položajnih koordinata su najveća zbog većeg udjela TEC-ova iznad promatrane stanice.

Na temelju iznesenih rezultata istraživanja zadane su određene činjenice i zaključci koji potvrđuju i dokazuju postavljenu hipotezu. Rezultati ovog istraživanja također su otvorili nove ideje i razmišljanja koje bi mogle obogatiti ovo područje, a odnose se na pristup ispitivanja pogreške. Ideje predstavljaju podlogu za daljnja istraživanja i iznesene su u zaključku.

9. ZAKLJUČAK

Istraživanje je obilježeno s početnom teorijskom pripremom i detaljnom analizom općih procesa i zakonitosti na relaciji magnetske aktivnosti Sunce – Zemlja te interakcija istih s GPS signalom. Zatim se pristupilo prikupljanju podataka te isto tako i pripremom podataka s ovlaštenih stranica, obradom i analizom istih, unutar programskih alata te grafički prikazivanjem rezultata istraživanja. Na kraju, donošenjem konkretnih zaključaka potvrđena je navedena hipoteza temeljem kvalitetnog uzorka istraživanja. Valja napomenuti da se prilikom istraživanja promatrao kratak vremenski period te da on ne predstavlja opću zakonitost.

GPS signal je podložan raznim kašnjenjima unutar vremena propagacije između satelita i korisničke antene. Najveća kašnjenja su uzrokovana u području sloja ionosfere. Glavni uzrok kašnjenja signala su povećana koncentracija električki nabijenih čestica unutar ionosfere koje su rezultat poremećaja na površini Sunca. Sunce zbog svoje strukture i unutarnjih procesa generira energiju u obliku elektromagnetskog zračenja i stvara iznimno jako magnetsko polje koje ima utjecaj na Zemlju i njezino magnetsko polje. U ovisnosti o stanju i karakteristika dvaju magnetskih polja primarno Sunčevim ovisiti će i pritok energije. Za vrijeme mirnog perioda Sunčeve aktivnosti tok elektromagnetskog zračenja od Sunca prema Zemlji je relativno slab i stalan, dok za vrijeme poremećenog perioda Sunčevih aktivnosti pritok energije se drastično povećava te se određenim magnetskim procesima započinje punjenje geomagnetskog polja energijom tj. električki nabijenim česticama koja su dio elektromagnetskog zračenja. Temeljem određenih magnetskih zakonitosti i procesa električki nabijene čestice se koncentriraju u području ionosfere. GPS Signal je predstavljen kao radio val koji je dio spektra elektromagnetskog zračenja. Interakcijom GPS signala i električki nabijenih čestica u periodima većih poremećaja Sunčeve aktivnosti poput magnetskih oluja ili geomagnetskih oluja, signal doživljava određeno ionosfersko kašnjenje što uzrokuje pogreške u određivanju položaja.

Iz dobivenih rezultata istraživanja navedena teorija se potvrđuje kao istinita i točna. Pogreške u određivanju položaja mogu ugroziti ili djelomično umanjiti sigurnost ljudi u pogledu gospodarskih djelatnosti, industrije ili osobne primjene (npr. navigacija u prometu ili na moru). Poremećaji poput geomagnetskih oluja koji imaju ozbiljan učinak na cjelokupni sustav određivanja položaja satelitima, stoga je potrebno i daljnje izučavanje na različitim područjima na svijetu, te njihov utjecaj u većem periodu vremena da se što bolje shvati utjecaj na određenim mikrolokacijama. Cilj navedenoga je da se sustavi koji ovise o GPS pozicioniranju mogu prilagoditi ili mogu biti otporniji u slučajevima ovih geomagnetskih poremećaja.

LITERATURA

KNJIGE:

- Bradley, P., A. et all.: Handbook, the Ionosphere and Its Effects on Radiowave Propagation: A Guide with Background to ITU-R Procedures for Radioplanners and Users, International Telecommunication Union Radiocommunication Bureau, 1998.
- Bothmer, V., Daglis, I., A.: Space Weather Physics and Effects, Praxis Publishing Ltd, Chichester, United Kingdom, 2007.
- Brovsky, J., E., Valdivia, J., A.: *The Earth's Magnetosphere*, A Systems Science Overview and Assessment, Surveys in Geophysics, 2018.
- 4. Campbell, W., H.:*Introduction to Magnetic Fields: Second Edition*, Cambridge University Press, University of Cambridge, Cambridge, United Kingdom, 2003.
- 5. Carter, C.: *Principles of GPS, A Brief Primer on the Operation of the Global Positioning System,* Allen Osborne Associates, California, 1997
- 6. Dizdar, D.: Osnove Statistike i Kineziometrije, Sveučilišta u Zagrebu, Zagreb, 2010.
- 7. Frankoi, A. et all.: Astronomy, OpenStax, 2016., p. 527-557,
- 8. Gogala, Z.: Osnove Statistike, Sinergija, Zagreb, 2001., p.
- 9. Hargreaves, J.K.: *The solar-terrestrial environment*, Cambridge University Press, University of Cambridge, Cambridge, United Kingdom, 1992.
- Houghton, J. T., Rycroft, M. J., i Dessler A. J.: *Physics of the Space Environment*, University of Cambridge, Cambridge, United Kingdom, 1998.
- Merrill, R., T., McElhinny, M., W.i P. L. McFadden, P., L.:*The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle*, Academic Press, Inc., San Diego, California, 1996.
- Raju, P., L., N.: Satellite Remote Sensing and GIS Applications in Agricultural Meteorology and WMO Satellite Activities, Chapter: Fundamentals of GPS, World Meteorological Organisation, Geneva, Switzerland, 2004., p. 121-151.
- Stix, M.: *The Sun: An Introduction, Second Edition*, Springer-Verlag Berlin Heidelberg, 2002.
Subirana, J. S., Zornoza, J. J. M. i Hernandez-Pajares, M.: GNSS Data Processing. Volume I: Fundamentals and Algorithms. Noordwijk, The Netherlands: ESA Communications, (2013)

ELEKTRONIČKI IZVORI:

- Brčić, D.:*Model nespecifičnoga dnevnog hoda ionosferskog kašnjenja signala za satelitsko određivanje položaja*, Sveučilište u Rijeci, Pomorski fakultet u Rijeci, Rijeka 2015., [Mrežno], Dostupno: <u>https://dr.nsk.hr/islandora/object/pfri:175 (01.10.2022.)</u>
- Caggiano J. I Paty C.S.: Analysis of E×B drifts in Earth's magnetosphere during geomagnetic reversals: potential consequences for plasmasphere behavior and stability, University of Oregon, Department of Earth Sciences, 2022., [Mrežno], Dostupno: <u>https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021JA029414</u> (21.12.2022.)
- Chapagain, N. P.: Ionosphere and its Influence in Communication Systems, Symmetry, vol. 10. 2016., [Mrežno], Dostupno: <u>https://www.researchgate.net/publication/322602493_Ionosphere_and_its_Influence_in_</u> <u>Communication_Systems</u> (12.01.2023.)
- 4. Chukwuma, V., U.: On Ionospheric Phenomena During Pre-Storm and Main Phase of a Very Intense Geomagnetic Storm, Acta Geopysica, vol. 58., No. 6, 2007., p. 1164-1192., [Mrežno], Dostupno: <u>https://link.springer.com/article/10.2478/s11600-010-0008-7</u> (13.01.2023.)
- Dawoud, S.:GNSS principles and comparison, Potsdam University, Potsdam, Germany. 2012., [Mrežno], Dostupno: <u>https://www.snet.tu-</u> berlin.de/fileadmin/fg220/courses/WS1112/snet-project/gnss-principles-andcomparison_dawoud.pdf (01.11.2022.)
- De Canck, M. H.:*Ionosphere, The Earth's Atmosphere*, antenneX, no. 63, 2002., [Mrežno], Dostupno: <u>https://ftp.unpad.ac.id/orari/library/library-sw-hw/amateur-radio/propagation/Radio%20Wave%20Propagation%20part%204%20-%20Ionosphere.pdf</u> (10.12.2022.)
- Ganushklna, N., Y., Liemohn, M., W., i Dubyagin, S.: *Current Systems in the Earth's Magnetosphere*, Reviews of Geophysics, vol. 56., 2018., p. 309 332., [Mrežno], Dostupno:

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/145256/rog20162.pdf?sequence =1_(04.01.2023.)

- Glatzmaier, G., A., Olson, P.:*Probing the Geodynamo*, Scientific American, vol.292., No.4, 2005., p. 50-57., [Mrežno], Dostupno: <u>https://pages.jh.edu/polson1/pdfs/Geodynamo.pdf (15.12.2022.)</u>
- 9. Gonzalez, W., D. et all.: What is geomagnetic storm?, Journal of Geophyisical Research, vol.99., No.4, 1994., p. 5771-5792., [Mrežno], Dostupno: <u>http://marte3.sid.inpe.br/col/sid.inpe.br/iris@1905/2005/07.29.02.43/doc/5861.pdf</u> (15.01.2023.)
- Gonzalez, W. D., Tsurutain, B. T. i Gonzalez, A. C.: *Interplanetary Origin of Geomagnetic Storms*, Space Science Reviews vol.88., 1999., p. 529–562., [Mrežno], Dostupno:

http://spaceweather.izmiran.ru/ichertok/%D0%91%D0%B8%D0%B1%D0%BB%D0%B 8%D0%BE%D1%82%D0%B5%D0%BA%D0%B0%20%D1%84%D0%B0%D0%B9% D0%BB%D0%BE%D0%B2%20%D1%81%D1%82%D0%B0%D1%82%D0%B5%D0 %B9/%D0%9F%D0%BE%20%D0%B3%D0%BE%D0%B4%D0%B0%D0%BC%20% D0%BF%D1%83%D0%B1%D0%BB%D0%B8%D0%BA%D0%B0%D1%86%D0%B8 %D0%B8%20%D1%81%201995/1999/Gonzalez_CME_geostorm.pdf (02.11.2022.)

- Hathaway, D., H.: *The Solar Cycle*, Living Rev. Solar Phys., 12, 4, 2015., [Mrežno], Dostupno: <u>https://link.springer.com/content/pdf/10.1007/lrsp-2015-4.pdf (20.11.2022.)</u>
- 12. Imatiaz, N., Younas, W., i Khan, M.: *Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017*, Annales Geophysicae, vol. 38., No. 2, 2020. p. 359-372., [Mrežno], Dostupno:

https://www.researchgate.net/publication/331099013_Response_of_low_to_mid_latitude ionosphere to the Geomagnetic storm of September 2017 (13.01.2023.)

- 13. Jakowski, N. et all.: Space Weather Effects in the Ionosphere and their impact on positioning, DLR: Conference: 'Space weather workshop', ESTEC, 17-19, 2001., [Mrežno], Dostupno: https://www.researchgate.net/publication/224794065_Space_Weather_Effects_in_the_Io https://www.researchgate.net/publication/224794065_Space_Weather_Effects_in_the_Io https://www.researchgate.net/publication/224794065_Space_Weather_Effects_in_the_Io_nosphere_and_their_impact_on_positioning (12.01.2023.)
- 14. Jin, S., Cardellach, E. i Xie F.: GNSS Remote Sensing, Theory, Methods and Applications. Remote Sensing and Digital Image Processing, Volume 19, Springer, Dordrecht Heidelberg New York London, 2014., [Mrežno], Dostupno:

ftp://117.239.47.98/Other%20Engineering%20Ebooks/GNSS%20Remote%20Sensing%2
0Theory,%20Methods%20and%20Applications%20by%20Shuanggen%20Jin,%20Estel
%20Cardellach%20and%20Feiqin%20Xie.pdf (26.10.2022.)

- 15. Jureković P.: "Komparativna parcijalna analiza raspršenja položajne točnosti GPS i GLONASS sustava u različitim stanjima svemirskog vremena", Diplomski rad, Sveučilište u Rijeci, Pomorski fakultet, Rijeka 2018., [Mrežno], Dostupno: https://repository.pfri.uniri.hr/islandora/object/pfri%3A1024 (22.02.2023.)
- 16. Kane, R., P.: Geomagnetic Field Variations, Space Science Reviews, vol.18., No. 4, 1976., p.413-531., [Mrežno], Dostupno: https://adsabs.harvard.edu/pdf/1976SSRv...18..413K (22.10.2022.)
- Karaim, M., Elsheikh, M. I Noureldin, A.: Multifunctional Operation and Application of GPS, Chapter 4: GNSS Error Sources, IntechOpen, 2018., [Mrežno], Dostupno: <u>https://www.intechopen.com/chapters/60049</u> (20.10.2022.)
- Keskinen, M., J.: *The Structure Of The High-latitude Ionosphere and Magnetosphere*, Johns Hopkins APL Technical Digest, vol. 5., No.2, 1984., p.154-158., [Mrežno], Dostupno: <u>https://www.jhuapl.edu/Content/techdigest/pdf/V05-N02/05-02-Keskinen.pdf</u> (26.12.2022.)
- Klecker, B.: *Current understanding of SEP acceleration and propagation*, Journal of Physics: Conference Series, vol. 409., 2013., [Mrežno], Dostupno: <u>https://iopscience.iop.org/article/10.1088/1742-6596/409/1/012015/pdf</u> (26.11.2022.)
- 20. Li, X., Temerin, M., A.: *The Electron Radiation Belt*, Space Science Reviews, vol.95., 2001., p. 569-580., [Mrežno], Dostupno: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.501.9343&rep=rep1&type=pdf <u>f (01.12.2022.)</u>
- 21. LiBO, L. et all.: Solar activity effects of the ionosphere: A brief review, Chinese Science Bulletin, vol.56., No.12, 2011., [Mrežno], Dostupno: <u>https://link.springer.com/content/pdf/10.1007/s11434-010-4226-9.pdf (14.01.2023.)</u>
- 22. McDonough, W., F.: *The Composition of the Earth*, Chemical Geology, vol.120., 1995.
 p. 223 253., [Mrežno], Dostupno: https://www.researchgate.net/publication/223836543. The composition of the Earth/lip

https://www.researchgate.net/publication/223836543_The_composition_of_the_Earth/lin k/5a974a05a6fdccecff0b1be8/download (22.11.2022.)

- Obara, T.: *The Magnetosphere, Formation of the Magnetosphere and Magnetospheric Plasma Regime*, Journal of the Communications Research Laboratory, vol.49., No.3, 2002., [Mrežno], Dostupno: <u>https://www.nict.go.jp/publication/shuppan/kihou-journal/journal-vol49no3/0301.pdf (17.11.2022.)</u>
- 24. Olson, P., Amit, H.: *Changes in Earth's dipole*, The Science of Nature, vol.93., No.11, December. 2006., [Mrežno], Dostupno: <u>https://www.researchgate.net/publication/6873189_Changes_in_Earth's_dipole</u> (01.12.2022.)
- Ossendrijver, M.: *The Solar Dynamo*, The Astronomy and Astrophysics Review, vol. 11., No.4, 2003., p. 287-367., [Mrežno], Dostupno: https://www.researchgate.net/publication/225490115 The solar dynamo (29.10.2022.)
- 26. Pulkkinen, T.: Space Weather: Terrestrial Perspective, Living Rev. Solar Phys.,vol.4, No.1, 2007., [Mrežno], Dostupno: <u>https://www.researchgate.net/publication/26459325_Space_Weather_Terrestrial_Perspective/link/5f9b5b4a299bf1b53e512ed0/download (</u>28.11.2022.)
- 27. Richardson, I., G.: Energetic Particles and Corotating Interaction Regions in the Solar Wind, Space Science Reviews, Vol. 111. no.3, 2004., p. 267–376., [Mrežno], Dostupno: <u>https://www.researchgate.net/publication/227292861_Energetic_Particles_and_Corotating_Interaction_Regions_in_the_Solar_Wind (12.12.2022.)</u>
- Russel, C., T.: *The solar wind interaction with the Earth's magnetosphere: a tutorial*, IEEE Transactions on Plasma Science, vol. 28., No. 6, December. 2000, p. 1818-1830., [Mrežno], Dostupno: <u>https://ieeexplore.ieee.org/document/902211</u> (12.12.2022.)
- Schussler, M.: The Sun and Its Restless Magnetic Field, Lecture Notes in Physics, vol. 656., No.1, 2004., [Mrežno], Dostupno: <u>https://www2.mps.mpg.de/projects/solar-mhd/pubs/Schuessler Honnef 2004.pdf</u> (05.11.2022.)
- Schwenn, R.: Space Weather: The Solar Perspective, Living Rev. Solar Phys., vol.3., No.2, 2006., [Mrežno], Dostupno: <u>https://link.springer.com/content/pdf/10.12942/lrsp-2006-2.pdf</u> (01.11.2022.)
- 31. Solanski, S., K., Inhester, B. I Schussler, M.: *The solar magnetic field*, Rep. Prog. Phys., vol. 63., No.3, 2006., p. 563–668., [Mrežno], Dostupno: <u>http://www2.mps.mpg.de/dokumente/publikationen/solanki/r55.pdf</u> (03.11.2022.)

- 32. Subirana, J. S., Zornoza, J. J. M. i Hernandez-Pajares, M., .: GPS Navigation Message, University of Catalunia, Spain, esa navipedia, 2011., [Mrežno], Dostupno: (https://gssc.esa.int/navipedia/index.php/GPS Navigation Message) (25.10.2022.)
- Sunehra, D.: Estimation of Prominent Global Positioning System Measurement Errors for Gagan Applications, European Scientific Journal, vol.9., No.15, 2013., [Mrežno], Dostupno: <u>https://core.ac.uk/download/pdf/236410055.pdf</u> (29.10.2022.)
- 34. Tahsin, M. Et all.: Analysis of DOP and its Preciseness in GNSS Position Estimation, International conference on electrical engineering and information communication technology (ICEEICT). IEEE, 2015., p. 1-6., [Mrežno], Dostupno: <u>https://koreascience.kr/article/JAKO201713056893556.pdf (</u>30.10.2022.)
- 35. Takahiro, O.: *The Magnetosphere: Formation of the Magnetosphere and Magnetospheric Plasma Regime*, Journal of the Communications Research Laboratory, vol.49., No.3, 2002., [Mrežno], Dostupno: <u>https://www.nict.go.jp/publication/shuppan/kihou-journal/journal-vol49no3/0301.pdf</u> (11.11.2022.)
- Tsagouri, I.: Space Weather Effects on the Earth's Upper Atmosphere: Short Report on Ionospheric Storm Effects at Middle Latitudes, atmosphere, vol.13., No.2, 2022.
 [Mrežno], Dostupno: <u>https://www.mdpi.com/2073-4433/13/2/346/htm (10.01.2023.)</u>
- 37. Tsutomu, N.: *Geomagnetic Storms*, Journal of the Communications Research Laboratory vol.49., No.3, 2002., p. 139-151., [Mrežno], Dostupno: https://www.nict.go.jp/publication/shuppan/kihou-journal/journal-vol49no3/0305.pdf (20.12.2022.)
- 38. Yang, Z., et.all.: Global view of ionospheric disturbance impacts on kinematic GPS positioning solutions during the 2015 St. Patrick's Day storm, Journal of Geophysical Research: Space Physics vol.125., No.7, 2020., p. 2.
- 39. Zhang, W. I Suh, H.: Analysis of Coarse Acquisition Code Generation Algorithm in GPS System, Journal of the KIECS, vol.12., No.1, 2017., p. 61-68., [Mrežno], Dostupno: <u>https://koreascience.kr/article/JAKO201713056893556.pdf (01.11.2022.)</u>

POVEZNICE NA KORIŠTENE PROGRAMSKE ALATE I ARHIVE PODATAKA:

- GNSS CALENDAR AND UTILITY, [Mrežno], Dostupno: <u>http://www.gnsscalendar.com/</u> (19.10.2022.)
- IGS, International GNSS Service, [Mrežno], Dostupno: <u>https://www.igs.org/network</u> (19.10.2022.)
- INTERMAGNET, International Real-time Magnetic Observatory Network, [Mrežno], Dostupno: <u>https://www.intermagnet.org/index-eng.php</u> (20.10.2022.)
- Magnetic components, [Mrežno], Dostupno: <u>https://www.geomag.nrcan.gc.ca/mag_fld/comp-en.php</u> (12.12.2022.)
- NOAA, National Oceanic and Atmospheric Administration, RINEX.n, [Mrežno], Dostupno: <u>https://geodesy.noaa.gov/corsdata/</u> (20.10.2022.)
- NOAA, National Oceanic and Atmospheric Administration, Geomagnetic kp and ap Indices, [Mrežno], Dostupno: <u>https://www.ngdc.noaa.gov/stp/geomag/kp_ap.html</u> (10.12.2022.)
- 7. Notepad++, [Mrežno], Dostupno: <u>https://notepad-plus-plus.org/downloads/</u> (17.10.2022.)
- RStudio Desktop, [Mrežno], Dostupno: <u>https://posit.co/download/rstudio-desktop/</u> (17.10.2022.)
- R-4.2.2 for Windows, programming language, [Mrežno], Dostupno: <u>https://cran.r-project.org/bin/windows/base/</u> (17.10.2022.)
- RTKLIB: An Open Source Program Package for GNSS Positioning, [Mrežno], Dostupno: <u>https://github.com/tomojitakasu/RTKLIB_bin</u>. (17.10.2022.)
- 11. World Data Center for Geomagnetism, Kyoto, Data Analysis Center for Geomagnetism and Space Magnetism, [Mrežno], Dostupno: <u>https://wdc.kugi.kyoto-u.ac.jp/</u> (22.11.2022.)

POPIS KRATICA

Kratica	Puni naziv na stranom jeziku	Tumačenje na hrvatskom jeziku
AE	engl. Auroral Electrojet	auroralni mlaz
AL	engl. Auroral Lower	najmanja vrijednost horizontalne komponente auroralnog mlaza
AODC	engl. Attitude and Orbit Determination and Control	sustav za održavanje kontrole, visine i orbite
AU	engl. Auroral Uper	najveća vrijednost horizontalne komponente auroralnog mlaza
BPSK	engl. Binary Phase Shift Keying	tehnika modulacije PRN kodova i navigacijske poruke na val nosioc
CDMA	engl. Code Division Multiple Access	tehnika višestrukog pristupa s kodnom raspodjelom
CIR	engl. corotating interaction regions	KPI, korotirajuće područje interakcije
CME	engl. Coronal Mass Ejection	KIM, koronarni izbačaj mase
C/A	engl. coarse / acquisition	PRN, kod za civilnu upotrebu
DOP	engl. Dilution of Precision	geometrijska razdioba točnosti
Dst	engl. Disturbance storm time index	indeks geomagnetske varijacije
EUV	engl. Extreme Ultra Violet	ekstremno elektromagnetsko ultraljubičasto zračenje
GDOP	engl. Geometric Dilution of Precision	geometrijska razdioba pogreške
GLONASS	rus. GLObal'naya NAvigatsionnaya Sputnikovaya Sistema	ruski globalni sustav za pozicioniranje
GNSS	engl. Global Navigation Satelite System	globalni navigacijski sustav
GONG	engl. Global Oscillation Network Group	solarne opservatorijske stanice
GPS	engl. Global Positionign System	američki globalni sustav za pozicioniranje
HCS	engl. heliospheric current sheet	HSS, heliosferni sloj struja

HOWengl. Handower wordgeometrijske razdiobe točnostiHOWengl. Handower wordriječ koja sadrži informacije o GPS vremenu dio podokvira navigacijske porukeIGSengl. International GNSS Servicemeđunarođne stanice koje pružaju usluge GNSS uslugeIKIMinterplanetarni koronarni izbačaj maseIMFengl. Interplanetarny magnetic fieldMMP, interplanetarno magnetsko poljeNGSengl. National Geodetic Surveyamerička nacionalna agencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istražvanje oceana i atmosferePengl. PrecisionPRN, precizni kodPDOPengl. Positional Dilution Of Precision prostrina komponeta gcometrijske razdiobe točnostiPOSengl. Positioning Solutionspoložajni zapisiPNNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Receiver INdependent EXchange Format sortion, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Receiver INdependent EXchange Formatformat podatciRINEXengl. Receiver INdependent EXchange Formatformat podatciRZengl. Stant Total Electron Content ukupni sadržaj elektrona pri različitim kutovima elevacijesadržaj elektrona pri različitim kutovima elevacijeSTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTDOPengl. Telemetry wordriječ telemetrija podokvira navigacijske porukeTD	HDOP	engl. Horizontal Dilution of Precision	horizontalna komponenta
HOWengl. Handower wordtočnostiHOWengl. Ilandower wordrijče Koja sakrži informacije o GPS vremenu dio podokvira navigacijske porukeIGSengl. International GNSS Servicemeđunarodne stanice koje pružaju usluge GNSS uslugeIKIMinterplanetarni koronarni izbačaj maseIMFengl. Interplanetary magnetic fieldMMP, interplanetarno magnetsko poljeNGSengl. National Geodetic Survey američka nacionalha agencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalha agencija za istraživanje oceana i atmosferePengl. PrecisionPRN, precizni kodPDOPengl. Positional Dilution Of Precision geometrijske razdiobe točnostipoložajni zapisi postorna komponenta geometrijske razdiobe točnostiPOSengl. Positioning Solutions Položajni zapisipoložajni zapisi pozicinirajnePRNengl. Receiver INdependent EXchange Format strani vramenuformat podatci radius ZremljeSSCengl. Sudden Impulse streceiznenadni ipočetak olujeSWCengl. Sudden Impulse engl. Stant Total Electron Content ukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Total Electron Content ukupni sadržaj elektrona pri različitim kutovima elektrona pri razli			geometrijske razdiobe
HOW HOWcngl. Handower wordriječ koja sadrži informacije o GPS vremenu dio podokvira navigacijske porukeIGSengl. International GNSS Servicemedunarodne stanice koje pružaju usluge GNSS uslugeIKIMinterplanetarni koronarni izbačaj maseIMFengl. Interplanetary magnetic fieldMMP, interplanetarno magnetsko poljeNGSengl. National Geodetic Surveyamerička nacionalna agencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istraživanje oceana i atmosferePengl. PrecisionPRN, precizni kodPDOPengl. Positional Dilution Of Precision prostorna komponenta geometrijske razdiobe točnostipoložajni zapisiPRNengl. Positioning Solutionspoložajni zapisiPVTengl. Dosition, Velocity and Time informacije o poziciji, brzini i vremenujapanski sustav za pozicioniranjeQZSSengl. Quazi-Zenth Satelite System engl. Sudden Impulsjapanski sustav za ipoziciniranjeSSCengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencement elevacijeiznenadni impulsSWCengl. Total Electron Content ukupni sadržaj elektrona pri različitim kutovima elevacijevrementaj elektrona tradius zenlje obokvira in somonenta geometrijske razdiobe točnostiTECengl. Tracking, Telemetry and Commandsustav za pračenje, telemetrija podokvira navigacijske poruke sustav za pračenje, telemetrija i upravlianie <td></td> <td></td> <td>točnosti</td>			točnosti
Informacije o GPS vremenu dio podokvira navigacijske poruke IGS cngl. International GNSS Service međunarodne stanice koje JIKIM interplanetarni koronarni izbačaj mase IMF cngl. Interplanetary magnetic field MMP, interplanetaron MSS engl. National Geodetic Survey američka nacionalna agencija za pružanje podataka o pozicioniranju NOAA engl. National Oceanic and Atmospheric američka nacionalna Administration agencija za istraživanje oceana i atmosfere P engl. Precision PRN, precizni kod PDOP engl. Positional Dilution Of Precision prostorna komponenta geometrijske razdiobe točnosti položajni zapisi PN engl. Position, Velocity and Time informacije o poziciji, brzini i vremenu QZSS cngl. Receiver INdependent EXchange Format format podatci Rz radus Zemlje iznenadni impuls SSC engl. Sudden Impulse iznenadni početak oluje SSC engl. Sudden Impulse iznenadni početak komponenta Rz<	HOW	engl. Handower word	riječ koja sadrži
IGScngl. International GNSS Servicemcdunarodne stanice koje pružaju usluge GNSS uslugeIKIMinterplanetarni koronarni izbačaj maseIMFengl. Interplanetary magnetic fieldMMP, interplanetarno magnetska poljeNGSengl. National Geodetic Surveyamerička nacionalna agencija za pružanje podataka o pozicioniranju podataka o pozicioniranju oceana i atmosfereNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istraživanje oceana i atmosferePengl. National Dilution Of Precisionprostorak komponenta geometrijske razdiobe točnostiPDOPengl. Positioning Solutionspolozajni zapisi polozajni zapisiPKNengl. Positioning Solutionspolozajni zapisi pozicioniranjeQZSSengl. Quazi-Zenth Satelite System sci al engl. Sudden Impulsejapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Format sci sustav za pozicioniranjeformat podatci sci sustav za pozicioniranjeSSCengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Impulseiznenadni inpošetak oluje sci elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedge engl. Tital Electron Contentvermenska komponenta geometrijske razdiobe točnostiTECengl. Tracking, Telemetry and Commandsustav za pračej elektrona ri različitim kutovima ravigacijske poruke			informacije o GPS
IGSengl. International GNSS Servicenavigacijske poruke mcdunarodne stanice koje pružaju usluge GNSS uslugeIKIMinterplanetarni koronarni izbačaj maseIMFengl. Interplanetary magnetic fieldMMP, interplanetarno magnetsko poljeNGSengl. National Geodetic Surveyamerička nacionalna agencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istrživanje oceana i atmosferePengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precision genetrijske razdiobe točnostipoložajni zapisiPVTengl. Positioning Solutionspoložajni zapisiPVTengl. Receiver INdependent EXchange Format pozicinijeinformacije o poziciji, brzini i vremenuQZSSengl. Receiver INdependent EXchange Format sSCCengl. Sudden ImpulseSSCengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSWCengl. Sudden Impulsepodolujni sturjini klinTDOPcngl. Tracking, Telemetry and Commandvremenska komponenta geometrijske razdiobe točnostiTECengl. Telemetry wordriziceadni mavigacijske poruke sutavi ageiske poruke			vremenu dio podokvira
IGS engl. International GNSS Service medunarodne stanice koje pružaju usluge GNSS usluge IKIM interplanetarni koronarni izbačaj mase IMF engl. Interplanetarry magnetic field MMP, interplanetarno magnetsko polje NGS engl. National Geodetic Survey američka nacionalna agencija za pružanje podataka o pozicioniranju NOAA engl. National Oceanic and Atmospheric Administration američka nacionalna agencija za istraživanje oceana i atmosfere P engl. precision PRN, precizni kod PDOP engl. Positional Dilution Of Precision prostorna komponenta geometrijske razdiobe točnosti PVT engl. Positioning Solutions položajni zapisi PRN cngl. Position, Velocity and Time informacije o poziciji, brzini i vremenu QZSS engl. Receiver INdependent EXchange Format format podatci Rz radius Zemlje iznenadni impuls SSC engl. Staden Impulse iznenadni impuls SSC engl. Substorm Commencement iznenadni impuls SWC engl. Total Electron Content ukupni sadržaj elektrona pri različitim kutovima elevacije SWC engl. Total Electron Content ukupni sadržaj elektrona TDOP cngl. Telemetry			navigacijske poruke
Justicepružaju usluge GNSS uslugeIKIMinterplanetarni koronarni izbačaj maseIMFengl. Interplanetary magnetic fieldMMP, interplanetarno magnetsko poljeNGScngl. National Geodetic Surveyamcrička nacionalna agencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamcrička nacionalna agencija za istraživanje oceana i atmosferePengl. PrecisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. Positioning Solutionspoložajni zapisiPNengl. Pseaudorandom noisepseudoslicajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicionirajeRINEXengl. Receiver INdependent EXchange Format stren Commencementiznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSSCengl. Substorm Current Wedgepodolujin struji klinTDOPengl. Total Electron Contentukupni sadržaj elektrona geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona geometrijske razdiobe točnosti<	IGS	engl. International GNSS Service	međunarodne stanice koje
IKIMusługeIKIMinterplanetarni koronarni izbačaj maseIMFengl. Interplanetary magnetic fieldMMP, interplanetarno magnetsko poljeNGSengl. National Geodetic Surveyamerička nacionalna agencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istraživanje oceana i atmosferePengl. precisionPRN, precizni kodPDOPcngl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. Positioning Solutionspoložajni zapisiPRNengl. Position, Velocity and Timeinformacije o poziciji, brzini i vorenenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeQZSSengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni impulsSSCengl. Sudden Storm Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Tracking, Telemetry and Commandsustav za prožeji, berveni podokvira navigacijske poruke sustav za prizenje, telemetriju unravlianie			pružaju usluge GNSS
IKIM interplanetarni koronarni izbačaj mase IMF engl. Interplanetary magnetic field MMP, interplanetarno magnetsko polje NGS engl. National Geodetic Survey američka nacionalna agencija za pružanje podataka o pozicioniranju NOAA engl. National Oceanic and Atmospheric Administration američka nacionalna agencija za istraživanje oceana i atmosfere P engl. precision PRN, precizni kod PDOP engl. Positional Dilution Of Precision prostorna komponenta geometrijske razdiobe točnosti POS engl. Positioning Solutions položajni zapisi PRN engl. Position, Velocity and Time informacije o poziciji, brzini i vremenu QZSS engl. Quazi-Zenth Satelite System japanski sustav za pozicioniranje RINEX engl. Sudden Impulse iznenadni početak oluje STEC engl. Sudden Storm Commencement iznenadni početak oluje SWC engl. Substorm Current Wedge podolujni strujni klin TDOP engl. Total Electron Content ukupni sadržaj elektrona pri različitim kutovima elevacije TEC engl. Total Electron Content ukupni sadržaj elektrona TLM engl. Tracking, Telemetry and Command ravigacijjske poruke točnosti			usluge
IMFengl. Interplanetary magnetic fieldMMP, interplanetarno magnetsko poljeNGSengl. National Geodetic Surveyamerička nacionalna agencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istraživanje oceana i atmosferePengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. Positioning Solutionspoložajni zapisiPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni impulsSSCengl. Sudden Storm Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Tracking, Telemetry and Commandsustav za praćenje, telemetrija podokvira navigacjiske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetrija i unavlianie	IKIM		interplanetarni koronarni
IMFengl. Interplanetary magnetic fieldMMP, interplanetarno magnetsko poljeNGSengl. National Geodetic Surveyamerička nacionalna agencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istraživanje oceana i atmosferePengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. Positioning Solutionspoložajni zapisiPRNengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Receiver INdependent EXchange Format engl. Sudden Impulseformat podatciRzengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni impulsSSCengl. Substorm Current Wedgepodoujni strujni klinTDOPengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navjagijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i uravlianie			izbačaj mase
NGSengl. National Geodetic Surveymagnetsko poljeNGAengl. National Geodetic Surveyamerička nacionalna agencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istraživanje oceana i atmosferePengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. Positioning Solutionspoložajni zapisiPRNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Receiver INdependent EXchange Formatformat podatci radius ZemljeRINEXengl. Raceiver INdependent EXchange Formatformat podatci iznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni impulsSSCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navjagijske poruke s	IMF	engl. Interplanetary magnetic field	MMP, interplanetarno
NGSengl. National Geodetic Surveyamerička nacionalna agencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istraživanje oceana i atmosferePengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. POsitioning Solutionspoložajni zapisiPRNengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRZengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni početak olujeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentvremenska komponenta geometrijske razdiobe točnostiTECengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i uravlianie			magnetsko polje
NOAAengl. National Oceanic and Atmospheric Administrationagencija za pružanje podataka o pozicioniranjuNOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istraživanje oceana i atmosferePengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. POsitioning Solutionspoložajni zapisiPRNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljesteletron ContentSSCengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni impulsSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTECengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i urravlianie	NGS	engl. National Geodetic Survey	američka nacionalna
NOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istraživanje oceana i atmosferePengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. POsitioning Solutionspoložajni zapisiPRNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljeiznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima ravigacijske pouke sutava za pračenje, telemetrija podokvira navigacijske poukeTT&Cengl. Tracking, Telemetry and Commandsustav za pračenje, telemetriju i uravlianie			agencija za pružanje
NOAAengl. National Oceanic and Atmospheric Administrationamerička nacionalna agencija za istraživanje oceana i atmosferePengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. POsitioning Solutionspoložajni zapisiPRNengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljeiznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni početak olujeSTECengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske poukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetrija neje, telemetrija neje,			podataka o pozicioniranju
Administrationagencija za istraživanje oceana i atmosferePengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. POsitioning Solutionspoložajni zapisiPRNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljeiznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSSCengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Total Electron Contentvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i uravljanie	NOAA	engl. National Oceanic and Atmospheric	američka nacionalna
Pengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. Positioning Solutionspoložajni zapisiPRNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljeiznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni impulsSTECengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona pri geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i unravlianie		Administration	agencija za istraživanje
Pengl. precisionPRN, precizni kodPDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. POsitioning Solutionspoložajni zapisiPRNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius ZemljestSIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni impulsSTECengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, tielemetriju i upravlianie			oceana i atmosfere
PDOPengl. Positional Dilution Of Precisionprostorna komponenta geometrijske razdiobe točnostiPOSengl. Positioning Solutionspoložajni zapisiPRNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljeiznenadni impulsSIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni početak olujeSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske poruke sustav za praćenje, tiemetriju i upravlianie	Р	engl. precision	PRN, precizni kod
POSengl. POsitioning Solutionspoložajni zapisiPRNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljeiznenadni impulsSIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni impulsSTECengl. Subtorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i uravljanje	PDOP	engl. Positional Dilution Of Precision	prostorna komponenta
POSengl. POsitioning Solutionspoložajni zapisiPRNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius ZemljeSIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona pri različite podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i unravlianie			geometrijske razdiobe
POSengl. POsitioning Solutionspoložajni zapisiPRNengl. Pseaudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljeiznenadni impulsSSCengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni impulsSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim pri različitim pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i unravlianie			točnosti
PRNengl. Pseudorandom noisepseudoslučajni kodPVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRziznenadni impulseiznenadni impulsSIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni ipočetak olujeSTECengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanie	POS	engl. POsitioning Solutions	položajni zapisi
PVTengl. Position, Velocity and Timeinformacije o poziciji, brzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljeiznenadni impulsSIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni početak olujeSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i uravljanje	PRN	engl. Pseaudorandom noise	pseudoslučajni kod
QZSSengl. Quazi-Zenth Satelite Systembrzini i vremenuQZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljeiznenadni impulsSIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni početak olujeSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutopi ukupni sadržaj elektrona pri različitim kutopi podolujni strujni klinTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje	PVT	engl. Position. Velocity and Time	informacije o poziciji.
QZSSengl. Quazi-Zenth Satelite Systemjapanski sustav za pozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius Zemljeiznenadni impulsSIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni početak olujeSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri azličitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje			brzini i vremenu
RINEXengl. Receiver INdependent EXchange FormatpozicioniranjeRINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius ZemljeSIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni početak olujeSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravlianje	QZSS	engl. Quazi-Zenth Satelite System	japanski sustav za
RINEXengl. Receiver INdependent EXchange Formatformat podatciRzradius ZemljeSIengl. Sudden ImpulseSSCengl. Sudden Storm CommencementSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current WedgeTDOPengl. Time Dilution of PrecisionTECengl. Total Electron ContentTECengl. Total Electron ContentTLMengl. Telemetry wordTT&Cengl. Tracking, Telemetry and CommandSustav za praćenje, telemetriju i upravljanje			pozicioniranje
Rzradius ZemljeSIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni početak olujeSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravlianie	RINEX	engl. Receiver INdependent EXchange Format	format podatci
SIengl. Sudden Impulseiznenadni impulsSSCengl. Sudden Storm Commencementiznenadni početak olujeSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravlianje	R _z		radius Zemlje
SSCengl. Sudden Storm Commencementiznenadni početak olujeSTECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravlianje	SI	engl. Sudden Impulse	iznenadni impuls
STECengl. Slant Total Electron Contentukupni sadržaj elektrona pri različitim kutovima elevacijeSWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektrona riječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje	SSC	engl. Sudden Storm Commencement	iznenadni početak oluje
SWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektronaTLMengl. Telemetry wordriječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje	STEC	engl. Slant Total Electron Content	ukupni sadržaj elektrona
SWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektronaTLMengl. Telemetry wordriječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje			pri različitim kutovima
SWCengl. Substorm Current Wedgepodolujni strujni klinTDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektronaTLMengl. Telemetry wordriječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje			elevacije
TDOPengl. Time Dilution of Precisionvremenska komponenta geometrijske razdiobe točnostiTECengl. Total Electron Contentukupni sadržaj elektronaTLMengl. Telemetry wordriječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje	SWC	engl. Substorm Current Wedge	podolujni strujni klin
TECengl. Total Electron Contentukupni sadržaj elektronaTLMengl. Telemetry wordriječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje	TDOP	engl. Time Dilution of Precision	vremenska komponenta
TECengl. Total Electron Contentukupni sadržaj elektronaTLMengl. Telemetry wordriječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje			geometrijske razdiobe
TECengl. Total Electron Contentukupni sadržaj elektronaTLMengl. Telemetry wordriječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje			točnosti
TLMengl. Telemetry wordriječ telemetrija podokvira navigacijske porukeTT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje	TEC	engl. Total Electron Content	ukupni sadržaj elektrona
TT&Cengl. Tracking, Telemetry and Commandsustav za praćenje, telemetriju i upravljanje	TLM	engl. Telemetry word	riječ telemetrija podokvira
TT&C engl. <i>Tracking, Telemetry and Command</i> sustav za praćenje, telemetriju i upravljanje			navigacijske poruke
telemetriiu i upravlianie	TT&C	engl. Tracking, Telemetry and Command	sustav za praćenje.
			telemetriju i upravljanje

UERE	engl. User Equivalent Ranging Error	korisnička razdioba
		pogreške
UT	engl. Universal Time	univerzalno vrijeme
UTC	engl. Universal Time Coordinated	koordinatno svjetsko
		vrijeme
UV	engl. Ultra Violet	elektromagnetsko
		ultraljubičasto zračenje
VDOP	engl. Vertical Dilution Of Precision	vertikalna komponenta
		geometrijske razdiobe
		točnosti
VTEC	engl. Vertical Total Electron Content	vertikalne vrijednosti
		ukupnog sadržaja elektrona
WGS 84	engl. World Geodetic System 1984	svjetski geodetski sustav

POPIS SLIKA

Slika 1. Pregled orbitalnih ravnina	6
Slika 2. Struktura i modulacija C/A koda na L1 val nosioc	8
Slika 3. Struktura navigacijske poruke	. 10
Slika 4. Proces korelacije primljenog i generiranog kodiranog signala	. 11
Slika 5. Proces određivanja procijenjenog položaja korisnika u prostoru i vremenu	. 13
Slika 6. Utjecaj najpreciznije (a), povoljne (b) i nepovoljne (c) prostorne razdiobe satelita	a
na određivanje položaja prijamnika	. 15
Slika 7. Struktura Sunca	. 18
Slika 8. Položajni zapis sunčevih pjega tijekom ciklusa koji poprimaju oblik leptira	. 22
Slika 9. Prominencija	. 23
Slika 10. Sunčeve baklje (bijela područja unutar sunčeve atmosfere)	. 24
Slika 11. Koronarni izbačaj mase	. 25
Slika 12. Brzina sunčevog vjetra u odnosu na sunčev minimum (lijevi prikaz) i sunčev	
maksimum (desni prikaz)	. 26
Slika 13. Heliosferni sloj struja 3D projekcija za vrijeme sunčevog maksimuma	. 28
Slika 14. Komponente geomagnetskog polja	. 33
Slika 15. Struktura magnetosfere	. 36
Slika 16. Magnetosferski sustav struja	. 38
Slika 17. Pod-olujni tijek događaja	. 47
Slika 18. Generiranje podolujnog electrojeta uslijed procesa rekonfiguracije	. 49
Slika 19. Prikaz IGS stanica (crveni kružići) i INTERMAGNET stanica (žuti kvadratići)) 58
Slika 20. Prikaz korelacijske matrice visokih geografskih širina	. 89
Slika 21. Prikaz korelacijske matrice umjerenih geografskih širina (sjeverne polutke)	. 90
Slika 22. Prikaz korelacijske matrice nižih geografskih širina	. 91
Slika 23. Prikaz korelacijske matrice srednjih geografskih širina (južna polutka)	. 92
Slika 24. Prikaz korelacijske matrice mirnog promatranog perioda	. 94
Slika 25. Prikaz korelacijske matrice perioda dana geomagnetske oluje	. 94

POPIS TABLICA

Tablica 1. Konverzija Kp u ap	
Tablica 2. Prikaz parametara intenziteta magnetske oluje	50
Tablica 3. Položaj IGS stanica	59
Tablica 4. Položaj INTERMAGNET stanica	
Tablica 5. Tumačenje koeficijenata korelacije	
Tablica 6. Prikaz vrijednosti geomagnetskih pokazatelja	
Tablica 7. Prikaz vrijednosti jakosti geomagnetskih komponenti (izraženo u nT)	
Tablica 8. Prikaz vrijednosti odstupanja položajnih koordinata (izraženo u m)	
Tablica 9. Prikaz vrijednosti korelacije mirnog dana u promatranom periodu	112
Tablica 10. Prikaz vrijednosti korelacije dana geomagentske oluje u promatranom	periodu
	115

POPIS GRAFIKONA

Grafikon 1. Prikaz profila slojeva ionosfere (lijevo) i atmosferskog sastava na dnevnoj	
strani(desno)	41
Grafikon 2. Prikaz vrijednosti Dst indeksa za Rujan 2017	51
Grafikon 3. Grafički prikaz Kp/ap indeksa	57
Grafikon 4. Grafički prikaz Ap indeksa	58
Grafikon 5. Grafički prikaz Ae indeksa	58
Grafikon 6. Grafički prikaz Dst indeksa	59
Grafikon 7. Grafički prikazi horizontalne komponente (X i Y) stanice Hornsund	71
Grafikon 8. Grafički prikazi vertikalne komponente (Z) stanice Hornsund	72
Grafikon 9. Histogrami komponenti geomagnetskog polja stanice Hornsund	73
Grafikon 10. Grafički prikazi horizontalne komponente (X i Y) stanice Lonsko Polje	74
Grafikon 11. Grafički prikazi vertikalne komponente (Z) stanice Lonsko Polje	76
Grafikon 12. Histogrami komponenti geomagnetskog polja stanice Lonsko Polje	76
Grafikon 13. Grafički prikazi horizontalne komponente (X i Y) stanice Ascension Island	78
Grafikon 14. Grafički prikazi vertikalne komponente (Z) stanice Ascension Island	79
Grafikon 15. Histogrami komponenti geomagnetskog polja stanice Ascension island	79
Grafikon 16. Grafički prikazi horizontalne komponente (X i Y) stanice Hermanus	31
Grafikon 17. Grafički prikazi vertikalne komponente (Z) stanice Hermanus	32
Grafikon 18. Histogrami komponenti geomagnetskog polja stanice Hermanus	33
Grafikon 19. Prikaz odstupanja položajnih koordinata stanice Ny-Alesund	35
Grafikon 20. Prikaz odstupanja položajnih koordinata stanice Padova	36
Grafikon 21. Prikaz odstupanja položajnih koordinata stanice Libreville	37
Grafikon 22. Prikaz odstupanja položajnih koordinata stanice Hermanus	38

PRILOG 1. REZULTATI KORELACIJE

Tablica 9. Prikaz vrijednosti korelacije mirnog dana u promatranom periodu

	lat_nyal	lon_nyal	h_nyal	X_hrn	Y_hrn	Z_hrn	lat_pado	lon_pado	h_pado	X_lon	Y_lon
lat_nyal	1	0.621406	-0.39643	-0.44656	0.137744	0.217759	-0.28809	0.315157	-0.93963	0.710535	0.332782
lon_nyal	0.621406	1	-0.51522	-0.75468	0.765092	0.271253	0.2937	0.007283	-0.60998	0.121159	0.799844
h_nyal	-0.39643	-0.51522	1	0.338565	-0.58312	-0.7199	0.175255	0.03152	0.641374	0.208849	-0.3123
X_hrn	-0.44656	-0.75468	0.338565	1	-0.55258	0.096847	0.057798	-0.26596	0.45037	0.10288	-0.95561
Y_hrn	0.137744	0.765092	-0.58312	-0.55258	1	0.404423	0.235025	-0.44323	-0.2505	-0.33868	0.671011
Z_hrn	0.217759	0.271253	-0.7199	0.096847	0.404423	1	-0.04949	-0.51096	-0.4358	-0.09534	0.030442
lat_pado	-0.28809	0.2937	0.175255	0.057798	0.235025	-0.04949	1	-0.06931	0.372198	-0.22191	0.107505
lon_pado	0.315157	0.007283	0.03152	-0.26596	-0.44323	-0.51096	-0.06931	1	-0.25699	0.172319	0.026069
h_pado	-0.93963	-0.60998	0.641374	0.45037	-0.2505	-0.4358	0.372198	-0.25699	1	-0.48169	-0.33639
X_lon	0.710535	0.121159	0.208849	0.10288	-0.33868	-0.09534	-0.22191	0.172319	-0.48169	1	-0.18132
Y_lon	0.332782	0.799844	-0.3123	-0.95561	0.671011	0.030442	0.107505	0.026069	-0.33639	-0.18132	1
Z_lon	0.651753	0.755621	-0.16685	-0.898	0.318652	-0.19896	0.001182	0.40314	-0.53222	0.288525	0.835839
lat_nklg	-0.29764	-0.12871	-0.16773	0.075568	0.45419	0.154105	-0.3881	-0.61506	0.154299	-0.34653	-0.03971
lon_nklg	-0.4789	-0.07219	-0.13097	0.228118	0.511432	0.061535	0.098684	-0.54625	0.378197	-0.4394	-0.15565
h_nklg	-0.07884	-0.17955	0.377795	-0.07264	0.054674	-0.33287	-0.44111	-0.24633	0.097661	0.01047	0.034713
X_asc	-0.63042	-0.71913	0.596421	0.78729	-0.35513	-0.32055	0.056604	-0.32659	0.690159	-0.05002	-0.75359
Y_asc	0.603733	0.810992	-0.55737	-0.88346	0.518391	0.281245	-0.03924	0.181113	-0.64362	0.023053	0.881231
Z_asc	-0.22866	-0.57895	0.72184	0.145836	-0.78359	-0.85098	-0.16134	0.57679	0.420532	0.19229	-0.29204
lat_hnus	0.066534	-0.09002	0.25848	-0.13355	0.111351	-0.07667	-0.58846	-0.47958	-0.0284	0.178069	0.156797
lon_hnus	-0.17103	-0.2071	-0.01056	-0.32153	0.060653	-0.12594	-0.689	-0.18764	0.113193	-0.23931	0.286829
h_hnus	-0.14005	-0.66663	0.305	0.385848	-0.89431	-0.40381	-0.22276	0.67648	0.184944	0.135483	-0.56123
X_her	0.710535	0.121159	0.208849	0.10288	-0.33868	-0.09534	-0.22191	0.172319	-0.48169	1	-0.18132
Y her	0.332782	0.799844	-0.3123	-0.95561	0.671011	0.030442	0.107505	0.026069	-0.33639	-0.18132	1

Z_her	0.651753	0.755621	-0.16685	-0.898	0.318652	-0.19896	0.001182	0.40314	-0.53222	0.288525	0.835839
Dst	-0.32594	0.002865	-0.24105	0.424196	0.480616	0.590814	0.244802	-0.79786	0.171627	-0.31972	-0.24097
Ae	-0.32594	0.002865	-0.24105	0.424196	0.480616	0.590814	0.244802	-0.79786	0.171627	-0.31972	-0.24097
Кр	-0.24315	-0.64418	0.048592	0.406074	-0.38537	0.173622	-0.59485	-0.11312	0.054777	-0.21544	-0.46927
Z_lon	lat_nklg	lon_nklg	h_nklg	X_asc	Y_asc	Z_asc	lat_hnus	lon_hnus	h_hnus	X_her	Y_her
0.651753	-0.29764	-0.4789	-0.07884	-0.63042	0.603733	-0.22866	0.066534	-0.17103	-0.14005	0.710535	0.332782
0.755621	-0.12871	-0.07219	-0.17955	-0.71913	0.810992	-0.57895	-0.09002	-0.2071	-0.66663	0.121159	0.799844
-0.16685	-0.16773	-0.13097	0.377795	0.596421	-0.55737	0.72184	0.25848	-0.01056	0.305	0.208849	-0.3123
-0.898	0.075568	0.228118	-0.07264	0.78729	-0.88346	0.145836	-0.13355	-0.32153	0.385848	0.10288	-0.95561
0.318652	0.45419	0.511432	0.054674	-0.35513	0.518391	-0.78359	0.111351	0.060653	-0.89431	-0.33868	0.671011
-0.19896	0.154105	0.061535	-0.33287	-0.32055	0.281245	-0.85098	-0.07667	-0.12594	-0.40381	-0.09534	0.030442
0.001182	-0.3881	0.098684	-0.44111	0.056604	-0.03924	-0.16134	-0.58846	-0.689	-0.22276	-0.22191	0.107505
0.40314	-0.61506	-0.54625	-0.24633	-0.32659	0.181113	0.57679	-0.47958	-0.18764	0.67648	0.172319	0.026069
-0.53222	0.154299	0.378197	0.097661	0.690159	-0.64362	0.420532	-0.0284	0.113193	0.184944	-0.48169	-0.33639
0.288525	-0.34653	-0.4394	0.01047	-0.05002	0.023053	0.19229	0.178069	-0.23931	0.135483	1	-0.18132
0.835839	-0.03971	-0.15565	0.034713	-0.75359	0.881231	-0.29204	0.156797	0.286829	-0.56123	-0.18132	1
1	-0.38093	-0.48277	-0.07669	-0.79307	0.854228	0.030371	0.046762	0.128479	-0.21843	0.288525	0.835839
-0.38093	1	0.827613	0.651214	0.420874	-0.26738	-0.35485	0.623303	0.500215	-0.50412	-0.34653	-0.03971
-0.48277	0.827613	1	0.326504	0.559608	-0.4234	-0.36073	0.178511	0.101202	-0.4738	-0.4394	-0.15565
-0.07669	0.651214	0.326504	1	0.40451	-0.25722	0.119834	0.851141	0.436678	-0.28961	0.01047	0.034713
-0.79307	0.420874	0.559608	0.40451	1	-0.96784	0.293852	0.198946	-0.07902	0.158012	-0.05002	-0.75359
0.854228	-0.26738	-0.4234	-0.25722	-0.96784	1	-0.35508	-0.03473	0.176015	-0.3568	0.023053	0.881231
0.030371	-0.35485	-0.36073	0.119834	0.293852	-0.35508	1	-0.00303	0.198832	0.770906	0.19229	-0.29204
0.046762	0.623303	0.178511	0.851141	0.198946	-0.03473	-0.00303	1	0.654046	-0.39117	0.178069	0.156797
0.128479	0.500215	0.101202	0.436678	-0.07902	0.176015	0.198832	0.654046	1	-0.0321	-0.23931	0.286829
-0.21843	-0.50412	-0.4738	-0.28961	0.158012	-0.3568	0.770906	-0.39117	-0.0321	1	0.135483	-0.56123
0.288525	-0.34653	-0.4394	0.01047	-0.05002	0.023053	0.19229	0.178069	-0.23931	0.135483	1	-0.18132
0.835839	-0.03971	-0.15565	0.034713	-0.75359	0.881231	-0.29204	0.156797	0.286829	-0.56123	-0.18132	1

1	-0.38093	-0.48277	-0.07669	-0.79307	0.854228	0.030371	0.046762	0.128479	-0.21843	0.288525	0.835839
-0.62061	0.608891	0.720797	0.136784	0.423592	-0.34758	-0.73087	0.109365	-0.22652	-0.60193	-0.31972	-0.24097
-0.62061	0.608891	0.720797	0.136784	0.423592	-0.34758	-0.73087	0.109365	-0.22652	-0.60193	-0.31972	-0.24097
-0.59032	0.393852	0.045314	0.480297	0.349578	-0.42059	0.059215	0.375588	0.296379	0.267648	-0.21544	-0.46927

Z_her	Dst	Ae	Кр
0.651753	-0.32594	-0.32594	-0.24315
0.755621	0.002865	0.002865	-0.64418
-0.16685	-0.24105	-0.24105	0.048592
-0.898	0.424196	0.424196	0.406074
0.318652	0.480616	0.480616	-0.38537
-0.19896	0.590814	0.590814	0.173622
0.001182	0.244802	0.244802	-0.59485
0.40314	-0.79786	-0.79786	-0.11312
-0.53222	0.171627	0.171627	0.054777
0.288525	-0.31972	-0.31972	-0.21544
0.835839	-0.24097	-0.24097	-0.46927
1	-0.62061	-0.62061	-0.59032
-0.38093	0.608891	0.608891	0.393852
-0.48277	0.720797	0.720797	0.045314
-0.07669	0.136784	0.136784	0.480297
-0.79307	0.423592	0.423592	0.349578
0.854228	-0.34758	-0.34758	-0.42059
0.030371	-0.73087	-0.73087	0.059215
0.046762	0.109365	0.109365	0.375588
0.128479	-0.22652	-0.22652	0.296379
-0.21843	-0.60193	-0.60193	0.267648
0.288525	-0.31972	-0.31972	-0.21544
0.835839	-0.24097	-0.24097	-0.46927

1	-0.62061	-0.62061	-0.59032
-0.62061	1	1	0.212037
-0.62061	1	1	0.212037
-0.59032	0.212037	0.212037	1

Tablica 10. Prikaz vrijednosti korelacije dana geomagentske oluje u promatranom periodu

	lat_nyal	lon_nyal	h_nyal	X_hrn	Y_hrn	Z_hrn	lat_pado	lon_pado	h_pado	X_lon	Y_lon
lat_nyal	1	0.222688	0.332925	0.043514	-0.43694	-0.21533	-0.53735	0.300075	-0.27035	0.038379	0.088102
lon_nyal	0.222688	1	-0.00865	0.081854	0.315218	0.165452	0.316329	0.457656	-0.26282	0.16439	0.288263
h_nyal	0.332925	-0.00865	1	0.075425	-0.28093	0.044944	-0.21112	0.496497	0.133994	0.285056	-0.2808
X_hrn	0.043514	0.081854	0.075425	1	-0.30618	0.174562	-0.14163	0.16821	-0.15882	0.317312	-0.0007
Y_hrn	-0.43694	0.315218	-0.28093	-0.30618	1	0.693597	0.541582	-0.08914	-0.13023	0.224033	-0.02481
Z_hrn	-0.21533	0.165452	0.044944	0.174562	0.693597	1	0.345789	0.225116	-0.2574	0.45424	-0.25159
lat_pado	-0.53735	0.316329	-0.21112	-0.14163	0.541582	0.345789	1	-0.02346	0.232182	-0.14193	0.106606
lon_pado	0.300075	0.457656	0.496497	0.16821	-0.08914	0.225116	-0.02346	1	-0.31397	0.484211	-0.02596
h_pado	-0.27035	-0.26282	0.133994	-0.15882	-0.13023	-0.2574	0.232182	-0.31397	1	-0.5776	-0.42205
X_lon	0.038379	0.16439	0.285056	0.317312	0.224033	0.45424	-0.14193	0.484211	-0.5776	1	-0.02856
Y_lon	0.088102	0.288263	-0.2808	-0.0007	-0.02481	-0.25159	0.106606	-0.02596	-0.42205	-0.02856	1
Z_lon	0.317374	-0.03871	0.020169	-0.16262	-0.57051	-0.70544	-0.0459	-0.22724	0.54137	-0.74213	-0.067
lat_nklg	0.190727	-0.24278	0.33897	-0.24657	0.191846	0.255699	-0.36773	-0.16107	0.173976	0.043612	-0.33067
lon_nklg	-0.19775	0.370825	-0.11299	0.316745	0.522857	0.586401	0.218424	0.277946	-0.401	0.460791	0.248466
h_nklg	0.205195	-0.53462	-0.10143	-0.27692	-0.25613	-0.32499	-0.40322	-0.49251	0.593047	-0.51306	-0.40905
X_asc	-0.20027	0.107774	0.220755	0.373843	0.328858	0.566095	-0.05053	0.3251	-0.1104	0.752073	-0.54855
Y_asc	-0.04655	0.182129	-0.2707	-0.54193	-0.00628	-0.40372	0.171182	0.064634	-0.15277	-0.35684	0.598051
Z_asc	-0.24693	-0.35587	0.023117	-0.40994	0.251635	0.221624	-0.00386	-0.30438	0.374592	-0.09636	-0.5117
lat_hnus	0.256846	-0.04698	-0.147	0.231805	-0.10519	-0.16781	-0.44428	-0.26884	-0.11089	0.009999	0.304925
lon_hnus	0.008984	0.239584	0.050184	0.577475	-0.04292	0.127504	-0.09641	0.483372	-0.49281	0.530922	0.378713
h_hnus	0.199579	-0.07268	-0.04401	-0.16604	-0.0793	-0.25641	0.183767	-0.28837	0.208694	-0.31186	0.231031
X her	-0.18994	0.283541	0.16091	0.206355	0.46319	0.562376	-0.00948	0.459553	-0.48401	0.903496	-0.14595

Y_her	0.187128	-0.16842	-0.25494	-0.54811	0.002749	-0.31616	0.109606	-0.35524	0.228554	-0.58704	0.062995
Z_her	-0.08952	0.308012	0.341848	0.221998	0.332539	0.462762	0.097553	0.470666	-0.38162	0.776998	0.10126
Dst	-0.04749	0.164505	0.217662	0.38158	0.12904	0.372696	-0.1781	0.406209	-0.13926	0.669186	-0.60787
Ae	-0.04749	0.164505	0.217662	0.38158	0.12904	0.372696	-0.1781	0.406209	-0.13926	0.669186	-0.60787
Кр	0.248614	-0.18803	-0.20242	-0.67335	-0.02596	-0.3096	-0.23236	-0.36977	-0.0148	-0.28857	0.207224
Z_lon	lat_nklg	lon_nklg	h_nklg	X_asc	Y_asc	Z_asc	lat_hnus	lon_hnus	h_hnus	X_her	Y_her
0.317374	0.190727	-0.19775	0.205195	-0.20027	-0.04655	-0.24693	0.256846	0.008984	0.199579	-0.18994	0.187128
-0.03871	-0.24278	0.370825	-0.53462	0.107774	0.182129	-0.35587	-0.04698	0.239584	-0.07268	0.283541	-0.16842
0.020169	0.33897	-0.11299	-0.10143	0.220755	-0.2707	0.023117	-0.147	0.050184	-0.04401	0.16091	-0.25494
-0.16262	-0.24657	0.316745	-0.27692	0.373843	-0.54193	-0.40994	0.231805	0.577475	-0.16604	0.206355	-0.54811
-0.57051	0.191846	0.522857	-0.25613	0.328858	-0.00628	0.251635	-0.10519	-0.04292	-0.0793	0.46319	0.002749
-0.70544	0.255699	0.586401	-0.32499	0.566095	-0.40372	0.221624	-0.16781	0.127504	-0.25641	0.562376	-0.31616
-0.0459	-0.36773	0.218424	-0.40322	-0.05053	0.171182	-0.00386	-0.44428	-0.09641	0.183767	-0.00948	0.109606
-0.22724	-0.16107	0.277946	-0.49251	0.3251	0.064634	-0.30438	-0.26884	0.483372	-0.28837	0.459553	-0.35524
0.54137	0.173976	-0.401	0.593047	-0.1104	-0.15277	0.374592	-0.11089	-0.49281	0.208694	-0.48401	0.228554
-0.74213	0.043612	0.460791	-0.51306	0.752073	-0.35684	-0.09636	0.009999	0.530922	-0.31186	0.903496	-0.58704
-0.067	-0.33067	0.248466	-0.40905	-0.54855	0.598051	-0.5117	0.304925	0.378713	0.231031	-0.14595	0.062995
1	-0.16599	-0.74646	0.511502	-0.55899	0.258632	-0.13516	-0.08125	-0.44927	0.252745	-0.77448	0.542223
-0.16599	1	0.045736	0.457839	0.190297	-0.36951	0.310696	0.087082	-0.34267	-0.21052	0.120849	-0.04112
-0.74646	0.045736	1	-0.56519	0.35342	-0.28472	-0.29531	0.333587	0.597792	0.024499	0.55406	-0.61998
0.511502	0.457839	-0.56519	1	-0.18216	-0.15092	0.427124	0.200374	-0.5555	0.149952	-0.51624	0.48903
-0.55899	0.190297	0.35342	-0.18216	1	-0.65221	0.151182	-0.10072	0.299657	-0.45698	0.852962	-0.57054
0.258632	-0.36951	-0.28472	-0.15092	-0.65221	1	-0.14166	-0.23722	-0.0934	-0.03663	-0.31966	0.496494
-0.13516	0.310696	-0.29531	0.427124	0.151182	-0.14166	1	-0.16584	-0.57288	0.024441	-0.05297	0.219955
-0.08125	0.087082	0.333587	0.200374	-0.10072	-0.23722	-0.16584	1	0.283092	0.479926	-0.10131	-0.23618
-0.44927	-0.34267	0.597792	-0.5555	0.299657	-0.0934	-0.57288	0.283092	1	-0.02353	0.481268	-0.42898
0.252745	-0.21052	0.024499	0.149952	-0.45698	-0.03663	0.024441	0.479926	-0.02353	1	-0.48999	0.289598
-0.77448	0.120849	0.55406	-0.51624	0.852962	-0.31966	-0.05297	-0.10131	0.481268	-0.48999	1	-0.60339

0.542223	-0.04112	-0.61998	0.48903	-0.57054	0.496494	0.219955	-0.23618	-0.42898	0.289598	-0.60339	1
-0.66298	0.068013	0.702181	-0.58963	0.602905	-0.33955	-0.25184	0.201996	0.594359	-0.03423	0.790066	-0.70732
-0.36098	0.100055	0.240838	-0.14687	0.937407	-0.34758	-0.73087	0.109365	-0.22652	-0.60193	-0.31972	-0.24097
-0.36098	0.100055	0.240838	-0.14687	0.937407	-0.34758	-0.73087	0.109365	-0.22652	-0.60193	-0.31972	-0.24097
0.204059	0.145562	-0.50384	0.419494	-0.5063	-0.42059	0.059215	0.375588	0.296379	0.267648	-0.21544	-0.46927

Z_her	Dst	Ae	Кр
-0.08952	-0.04749	-0.04749	0.248614
0.308012	0.164505	0.164505	-0.18803
0.341848	0.217662	0.217662	-0.20242
0.221998	0.38158	0.38158	-0.67335
0.332539	0.12904	0.12904	-0.02596
0.462762	0.372696	0.372696	-0.3096
0.097553	-0.1781	-0.1781	-0.23236
0.470666	0.406209	0.406209	-0.36977
-0.38162	-0.13926	-0.13926	-0.0148
0.776998	0.669186	0.669186	-0.28857
0.10126	-0.60787	-0.60787	0.207224
-0.66298	-0.36098	-0.36098	0.204059
0.068013	0.100055	0.100055	0.145562
0.702181	0.240838	0.240838	-0.50384
-0.58963	-0.14687	-0.14687	0.419494
0.602905	0.937407	0.937407	-0.5063
-0.33955	-0.61427	-0.61427	0.496495
-0.25184	0.009399	0.009399	0.508747
0.201996	-0.10587	-0.10587	0.081797
0.594359	0.278363	0.278363	-0.59022
-0.03423	-0.47955	-0.47955	0.200179
0.790066	0.773353	0.773353	-0.39861

-0.70732	-0.56566	-0.56566	0.561263
1	0.509911	0.509911	-0.47263
0.509911	1	1	-0.53203
0.509911	1	1	-0.53203
-0.47263	-0.53203	-0.53203	1

PRILOG 2. PROGRAMSKI KOD

NYAL00NOR

```
files on<-Sys.glob('*ON*.pos')</pre>
pos_on<-lapply(files_on, function(x) read.csv(x, skip=12, sep = ','))</pre>
pos_on<-lapply(pos_on, function(x) x[1:4])</pre>
ref pos<-c(78.9296,11.8651,79)
dev_mtr_iono <- function(ref_pos,df) {</pre>
  d_lat<-(ref_pos[1]-df[,2])</pre>
  d_lon<-(ref_pos[2]-df[,3])</pre>
  d_h<-(ref_pos[3]-df[,4])</pre>
  cos_lat<-(cos(ref_pos[1]*pi/180))</pre>
  lat_m<-(d_lat*60*1852)</pre>
  lon_m<-(d_lon*60*1852*cos_lat)</pre>
  df$lat_m<-lat_m
  df$lon_m<-lon_m
  df$h_m<-d_h
  return(df)
}
pos_on<-lapply(pos_on,function(x) dev_mtr_iono(ref_pos,x))</pre>
POS_ON<-do.call(rbind.data.frame,pos_on)</pre>
cols = c("GPST", "lat", "lon", "height", "lat_m", "lon_m", "h_m")
colnames(POS_ON)<-cols # pridružujemo imena stupcima</pre>
POS_ON$GPST<-as.POSIXct(POS_ON$GPST)</pre>
summary(POS_ON)
sd(POS_ON$lat_m)
sd(POS_ON$lon_m)
sd(POS_ON$h_m)
```

```
rows<-names(summary(POS_ON$lat_m))
```

```
summary_lat_m_on<-as.data.frame(matrix(summary(POS_ON$lat_m)))</pre>
```

```
summary_lat_m_on<-rbind(summary_lat_m_on,sd(POS_ON$lat_m))</pre>
```

```
summary(POS_ON$lon_m)
```

```
rows<-names(summary(POS_ON$lon_m))</pre>
```

```
summary_lon_m_on<-as.data.frame(matrix(summary(POS_ON$lon_m)))</pre>
```

```
summary_lon_m_on<-rbind(summary_lon_m_on,sd(POS_ON$lon_m))</pre>
```

```
rows<-names(summary(POS_ON$h_m))</pre>
```

```
summary_h_m_on<-as.data.frame(matrix(summary(POS_ON$h_m)))</pre>
```

```
summary_h_m_on<-rbind(summary_h_m_on,sd(POS_ON$h_m))</pre>
```

```
cols<-c('lat_m', 'lon_m', 'h_m')</pre>
```

```
stats_on<-cbind.data.frame(summary_lat_m_on,summary_lon_m_on, summary_h_m_on)</pre>
```

```
rownames(stats_on)<-c(rows, 'sd')</pre>
```

```
colnames(stats_on)<-cols</pre>
```

```
print(stats_on)
```

```
write.csv(file='stats_on.csv', stats_on)
```

```
plot(x = POS_ON$GPST, y =POS_ON$lat_m, col="red",ylim=c(min(stats_on$h_m),
max(stats_on$h_m)),type ='l',
```

```
main = 'IGS NYAL00: DOY 249 - 253 /2017', xlab = 'Vrijeme (dani)',
```

```
ylab ='Odstupanja (m)')
```

```
grid(nx = NULL, ny = NULL, col = "lightgray", lty = "dotted")
```

```
points(x = POS_ON$GPST, y = POS_ON$lon_m, col ='blue', type='l')
```

```
points(x = POS_ON$GPST, y = POS_ON$h_m, col ='darkgreen',type='l')
```

```
legend("bottomright", legend=c("lat_m", "lon_m", "h_m"),
```

```
col=c("red", "blue", "darkgreen"), bg="transparent", lty=c(1,1),
cex=1)
```

```
files_on<-Sys.glob('*min*.min')
```

```
geomag<-lapply(files_on, function(x) read.csv(x, skip = 24, header =TRUE,
sep=','))
```

```
geomag<-lapply(geomag, function(x) x[,1:6])</pre>
```

```
GEOMAGN<-do.call(rbind.data.frame,geomag)</pre>
```

```
c names <- c("Date", "Time", "DOY", "X", "Y", "Z")</pre>
colnames(GEOMAGN)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
GEOMAGN[, fctr.col] <- sapply(GEOMAGN[, fctr.col], as.character)</pre>
GEOMAGN$GPST <- paste(GEOMAGN$Date,GEOMAGN$Time)</pre>
GEOMAGN$GPST<-as.POSIXct(GEOMAGN$GPST)</pre>
GEOMAGN <- GEOMAGN[,4:7]</pre>
Dst<-read.csv(file='Dst2017.dat', skip = 17, header =TRUE, sep=',')</pre>
Dst<-Dst[,1:4]</pre>
c names <- c("Date", "Time", "DOY", "Dst")</pre>
colnames(Dst)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
Dst[, fctr.col] <- sapply(Dst[, fctr.col], as.character)</pre>
Dst$GPST <- paste(Dst$Date,Dst$Time)</pre>
Dst$GPST<-as.POSIXct(Dst$GPST)</pre>
Dst <- Dst[,4:5]</pre>
print(Dst)
Kp<-read.csv(file='Kp2017.dat', skip = 35, header =TRUE, sep=',')</pre>
Kp<-Kp[,1:6]</pre>
c_names <- c("Date", "Time", "DOY", "ap", "Kp", "Ap")</pre>
colnames(Kp)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
Kp[, fctr.col] <- sapply(Kp[, fctr.col], as.character)</pre>
Kp$GPST <- paste(Kp$Date,Kp$Time)</pre>
Kp$GPST<-as.POSIXct(Kp$GPST)</pre>
Kp$Kp<-as.numeric(Kp$Kp)</pre>
Kp$ap<-as.numeric(Kp$ap)</pre>
Kp$Ap<-as.numeric(Kp$Ap)</pre>
Kp <- Kp[,5:7]</pre>
print(Kp)
```

```
Ae<-read.csv(file='Ae2017.dat', skip = 17, header =TRUE, sep=',')
Ae<-Ae[,1:4]
c_names <- c("Date", "Time", "DOY", "Ae")</pre>
colnames(Ae)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
Ae[, fctr.col] <- sapply(Ae[, fctr.col], as.character)</pre>
Ae$GPST <- paste(Ae$Date,Ae$Time)</pre>
Ae$GPST<-as.POSIXct(Ae$GPST)</pre>
Ae <- Ae[,4:5]
plot(x = total$GPST, y= total$Ae, col="red",ylim=c(min(stats$Ae),
max(stats$Ae)), type ='1',
     main = 'Ae indeks, DOY 249-253/2017', xlab = 'Vrijeme (dani)',
     ylab ='nT')
print(Ae)
total <- merge(POS ON,GEOMAGN,by="GPST", all.x=TRUE)</pre>
total <- merge(total, Dst, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Ae, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Kp, by = "GPST", all.x = TRUE)</pre>
summary(total)
install.packages("dplyr")
library(dplyr)
total <- total %>%
  select(c(1, 5, 6, 7, 8, 9, 10, 11, 12, 13,))
write.csv(file='all observations3.csv', total, row.names = FALSE)
stats<-lapply(total, function(x) matrix(summary(x)))</pre>
stats<-lapply(stats, function(x) as.data.frame(x))</pre>
stats<-lapply(stats, function(x) x[1:6,])</pre>
stats<-do.call(cbind.data.frame, stats)</pre>
row.names(stats)<-c("MIN", "1stQ", "Median", "Mean", "3rdQ", "MAX")</pre>
stats<-stats[,2:10]</pre>
```

```
summary(stats)
write.csv(file='mean_stats2.csv', stats, row.names = FALSE)
plot(x = total$GPST, y= total$X, col="red",ylim=c(min(stats$X),
max(stats$X)), type ='1',
     main = 'Jakost X komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
    ylab ='X [nT]')
hist(total$X, col="blue", xlab="Vrijednosti X komponente", ylab="Učestalost",
breaks=60,
     main="Histogram X komponente", xlim=c(min(stats$X), max(stats$X)))
plot(x = total$GPST, y= total$Y, col="red",ylim=c(min(stats$Y),
max(stats$Y)), type ='1',
     main = 'Jakost Y komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
     ylab ='X [nT]')
hist(total$Y, col="red", xlab="Vrijednosti Y komponente", ylab="Učestalost",
breaks=40,
     main="Histogram Y komponente", xlim=c(min(stats$Y), max(stats$Y)))
plot(x = total$GPST, y= total$Z, col="red",ylim=c(min(stats$Z),
max(stats$Z)), type ='1',
     main = 'Jakost Z komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
     ylab ='X [nT]')
hist(total$Z, col="green", xlab="Vrijednosti Z komponente",
ylab="Učestalost", breaks=300,
     main="Histogram Z komponente", xlim=c(min(stats$Z), max(stats$Z)))
total = 60) total + our <- rep(seq(1, 120), each = 60)
agg<- total %>%
  group_by(hour) %>%
  summarize(mean_lat = mean(lat_m, na.rm = TRUE),
            mean_lon = mean(lon_m, na.rm = TRUE),
            mean_h = mean(h_m, na.rm = TRUE),
            mean_X = mean(X, na.rm = TRUE),
```

```
mean_Y = mean(Y, na.rm = TRUE),
mean_Z = mean(Z, na.rm = TRUE),
Dst=mean(Dst, na.rm = TRUE),
Ae=mean(Dst, na.rm = TRUE),
Kp=mean(Kp, na.rm = TRUE),
Ap=mean(Ap, na.rm = TRUE))
agg<-na.omit(agg)
install.packages("corrplot")
library('corrplot')
corr<-cor(agg[2:11])
print(corr)
corrplot(corr, type = "upper",
tl.col = "black", tl.srt = 45)
```

PADO00ITA

```
files_on<-Sys.glob('*ON*.pos')
pos_on<-lapply(files_on, function(x) read.csv(x, skip=12, sep = ','))
pos_on<-lapply(pos_on, function(x) x[1:4])
ref_pos<-c(45.411166146,11.896064765,64.7)
dev_mtr_iono <- function(ref_pos,df) {
    d_lat<-(ref_pos[1]-df[,2])
    d_lon<-(ref_pos[2]-df[,3])
    d_h<-(ref_pos[3]-df[,4])
    cos_lat<-(cos(ref_pos[1]*pi/180))
    lat_m<-(d_lat*60*1852*cos_lat)
    df$lat_m<-lat_m
    df$lon_m<-lon_m
    df$h_m<-d_h</pre>
```

```
return(df)
}
pos_on<-lapply(pos_on,function(x) dev_mtr_iono(ref_pos,x))</pre>
POS ON<-do.call(rbind.data.frame,pos on)</pre>
cols = c("GPST","lat", "lon", "height", "lat m", "lon m", "h m")
colnames(POS ON)<-cols</pre>
POS ON$GPST<-as.POSIXct(POS ON$GPST)</pre>
summary(POS ON)
sd(POS_ON$lat_m)
sd(POS ON$lon m)
sd(POS ON$h m)
rows<-names(summary(POS ON$lat m))</pre>
summary_lat_m_on<-as.data.frame(matrix(summary(POS_ON$lat_m)))</pre>
summary_lat_m_on<-rbind(summary_lat_m_on,sd(POS_ON$lat_m))</pre>
summary(POS ON$lon m)
rows<-names(summary(POS ON$lon m))</pre>
summary_lon_m_on<-as.data.frame(matrix(summary(POS_ON$lon_m)))</pre>
summary_lon_m_on<-rbind(summary_lon_m_on,sd(POS_ON$lon_m))</pre>
rows<-names(summary(POS_ON$h_m))</pre>
summary_h_m_on<-as.data.frame(matrix(summary(POS_ON$h_m)))</pre>
summary_h_m_on<-rbind(summary_h_m_on,sd(POS_ON$h_m))</pre>
cols<-c('lat_m', 'lon_m', 'h_m')</pre>
stats_on<-cbind.data.frame(summary_lat_m_on,summary_lon_m_on, summary_h_m_on)</pre>
# 'on'!!
rownames(stats on)<-c(rows, 'sd')</pre>
colnames(stats_on)<-cols</pre>
print(stats_on)
write.csv(file='stats on.csv', stats on)
plot(x = POS_ON$GPST, y =POS_ON$lat_m, col="red",ylim=c(min(stats_on$h_m),
max(stats_on$h_m)),type ='1',
```

```
main = 'IGS PADO00ITA: DOY 249 - 253 /2017', xlab = 'Vrijeme (dani)',
     ylab ='Odstupanja (m)')
grid(nx = NULL, ny = NULL, col = "lightgray", lty = "dotted")
points(x = POS ON $GPST, y = POS ON $lon m, col = 'blue', type='l')
points(x = POS ON $GPST, y = POS ON $h m, col ='darkgreen', type='l')
legend("topleft", legend=c("lat m", "lon m", "h m"),
       col=c("red", "blue", "darkgreen"), bg="transparent", lty=c(1,1),
cex=1)
files on<-Sys.glob('*min*.min')</pre>
geomag<-lapply(files_on, function(x) read.csv(x, skip = 24, header =TRUE,</pre>
sep=','))
geomag<-lapply(geomag, function(x) x[,1:6])</pre>
GEOMAGN<-do.call(rbind.data.frame,geomag)</pre>
c names <- c("Date", "Time", "DOY", "X", "Y", "Z")</pre>
colnames(GEOMAGN)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
GEOMAGN[, fctr.col] <- sapply(GEOMAGN[, fctr.col], as.character)</pre>
GEOMAGN$GPST <- paste(GEOMAGN$Date,GEOMAGN$Time)</pre>
GEOMAGN$GPST<-as.POSIXct(GEOMAGN$GPST)</pre>
GEOMAGN <- GEOMAGN[,4:7]</pre>
Dst<-read.csv(file='Dst2017.dat', skip = 17, header =TRUE, sep=',')</pre>
Dst<-Dst[,1:4]</pre>
c_names <- c("Date", "Time", "DOY", "Dst")</pre>
colnames(Dst)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
Dst[, fctr.col] <- sapply(Dst[, fctr.col], as.character)</pre>
Dst$GPST <- paste(Dst$Date,Dst$Time)</pre>
Dst$GPST<-as.POSIXct(Dst$GPST)</pre>
Dst <- Dst[,4:5]</pre>
print(Dst)
```

```
Kp<-read.csv(file='Kp2017.dat', skip = 35, header =TRUE, sep=',')</pre>
Kp<-Kp[,1:6]</pre>
c_names <- c("Date", "Time", "DOY", "ap", "Kp", "Ap")</pre>
colnames(Kp)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
Kp[, fctr.col] <- sapply(Kp[, fctr.col], as.character)</pre>
Kp$GPST <- paste(Kp$Date,Kp$Time)</pre>
Kp$GPST<-as.POSIXct(Kp$GPST)</pre>
Kp$Kp<-as.numeric(Kp$Kp)</pre>
Kp$ap<-as.numeric(Kp$ap)</pre>
Kp$Ap<-as.numeric(Kp$Ap)</pre>
Kp <- Kp[,5:7]
print(Kp)
total <- merge(POS_ON,GEOMAGN,by="GPST", all.x=TRUE)</pre>
total <- merge(total, Dst, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Kp, by = "GPST", all.x = TRUE)</pre>
summary(total)
install.packages("dplyr")
library(dplyr)
total <- total %>%
  select(c(1, 5, 6, 7, 8, 9, 10, 11, 12, 13,))
write.csv(file='all_observations2.csv', total, row.names = FALSE)
stats<-lapply(total, function(x) matrix(summary(x)))</pre>
stats<-lapply(stats, function(x) as.data.frame(x))</pre>
stats<-lapply(stats, function(x) x[1:6,])</pre>
stats<-do.call(cbind.data.frame, stats)</pre>
row.names(stats)<-c("MIN", "1stQ","Median","Mean","3rdQ","MAX")</pre>
stats<-stats[,2:10]</pre>
summary(stats)
write.csv(file='mean_stats2.csv', stats, row.names = FALSE)
```

```
plot(x = total$GPST, y= total$X, col="red",ylim=c(min(stats$X),
max(stats$X)), type ='1',
     main = 'Jakost X komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
     ylab ='X [nT]')
hist(total$X, col="blue", xlab="Vrijednosti X komponente", ylab="Učestalost",
breaks=60,
     main="Histogram X komponente", xlim=c(min(stats$X), max(stats$X)))
plot(x = total$GPST, y= total$Y, col="red",ylim=c(min(stats$Y),
max(stats$Y)), type ='1',
     main = 'Jakost Y komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
     ylab ='Y [nT]')
hist(total$Y, col="red", xlab="Vrijednosti Y komponente", ylab="Učestalost",
breaks=40,
     main="Histogram Y komponente", xlim=c(min(stats$Y), max(stats$Y)))
plot(x = total$GPST, y= total$Z, col="red",ylim=c(min(stats$Z),
max(stats$Z)), type ='1',
     main = 'Jakost Z komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
    ylab ='X [nT]')
hist(total$Z, col="green", xlab="Vrijednosti Z komponente",
ylab="Učestalost", breaks=60,
     main="Histogram Z komponente", xlim=c(min(stats$Z), max(stats$Z)))
total + our < -rep(seq(1, 120), each = 60)
agg<- total %>%
  group_by(hour) %>%
  summarize(mean_lat = mean(lat_m, na.rm = TRUE),
            mean_lon = mean(lon_m, na.rm = TRUE),
            mean_h = mean(h_m, na.rm = TRUE),
            mean_X = mean(X, na.rm = TRUE),
            mean Y = mean(Y, na.rm = TRUE),
            mean_Z = mean(Z, na.rm = TRUE),
```

```
Dst=mean(Dst, na.rm = TRUE),
Kp=mean(Kp, na.rm = TRUE),
Ap=mean(Ap, na.rm = TRUE))
agg<-na.omit(agg)
install.packages("corrplot")
library('corrplot')
corr<-cor(agg[2:10])
print(corr)
corrplot(corr, type = "upper",
tl.col = "black", tl.srt = 45)
```

NKLG00GAB

```
files_on<-Sys.glob('*ON*.pos')</pre>
pos on<-lapply(files on, function(x) read.csv(x, skip=12, sep = ','))</pre>
pos_on<-lapply(pos_on, function(x) x[1:4])</pre>
ref_pos<-c(0.35391667,9.67210833,32)</pre>
dev_mtr_iono <- function(ref_pos,df) {</pre>
  d_lat<-(ref_pos[1]-df[,2])</pre>
  d lon<-(ref pos[2]-df[,3])</pre>
  d h<-(ref pos[3]-df[,4])</pre>
  cos_lat<-(cos(ref_pos[1]*pi/180))</pre>
  lat_m<-(d_lat*60*1852)</pre>
  lon m<-(d lon*60*1852*cos lat)</pre>
  df$lat m<-lat m
  df$lon_m<-lon_m
  df$h_m<-d_h
  return(df)
}
pos_on<-lapply(pos_on,function(x) dev_mtr_iono(ref_pos,x))</pre>
```

```
POS ON<-do.call(rbind.data.frame,pos on)
cols = c("GPST","lat", "lon", "height", "lat m", "lon m", "h m")
colnames(POS ON)<-cols</pre>
POS ON$GPST<-as.POSIXct(POS ON$GPST)</pre>
summary(POS ON)
sd(POS ON$lat m)
sd(POS ON$lon m)
sd(POS ON$h m)
rows<-names(summary(POS_ON$lat_m))</pre>
summary lat m on<-as.data.frame(matrix(summary(POS ON$lat m)))</pre>
summary lat m on<-rbind(summary lat m on,sd(POS ON$lat m))</pre>
summary(POS ON$lon m)
rows<-names(summary(POS_ON$lon_m))</pre>
summary_lon_m_on<-as.data.frame(matrix(summary(POS_ON$lon_m)))</pre>
summary lon m on<-rbind(summary lon m on,sd(POS ON$lon m))</pre>
rows<-names(summary(POS ON$h m))</pre>
summary_h_m_on<-as.data.frame(matrix(summary(POS_ON$h_m)))</pre>
summary_h_m_on<-rbind(summary_h_m_on,sd(POS_ON$h_m))</pre>
cols<-c('lat_m', 'lon_m', 'h_m')</pre>
stats_on<-cbind.data.frame(summary_lat_m_on,summary_lon_m_on, summary_h_m_on)</pre>
# 'on'!!
rownames(stats_on)<-c(rows, 'sd')</pre>
colnames(stats on)<-cols</pre>
print(stats on)
write.csv(file='stats on.csv', stats on)
plot(x = POS_ON$GPST, y =POS_ON$lat_m, col="red",ylim=c(min(stats_on$h_m),
max(stats_on$h_m)),type ='1',
     main = 'IGS NKLG00GAB: DOY 249 - 253 /2017', xlab = 'Vrijeme (dani)',
     ylab ='Odstupanja (m)')
grid(nx = NULL, ny = NULL, col = "lightgray", lty = "dotted")
```

```
points(x = POS ON $GPST, y = POS ON $lon m, col = 'blue', type='l')
points(x = POS ON$GPST, y = POS ON$h m, col ='darkgreen',type='l')
legend("bottomrigh", legend=c("lat m", "lon m", "h m"),
        col=c("red", "blue", "darkgreen"), bg="transparent", lty=c(1,1),
cex=1)
files_on<-Sys.glob('*min*.min')</pre>
geomag<-lapply(files_on, function(x) read.csv(x, skip = 24, header =TRUE,</pre>
sep=','))
geomag<-lapply(geomag, function(x) x[,1:6])</pre>
GEOMAGN<-do.call(rbind.data.frame,geomag)</pre>
c names <- c("Date", "Time", "DOY", "X", "Y", "Z")</pre>
colnames(GEOMAGN)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
GEOMAGN[, fctr.col] <- sapply(GEOMAGN[, fctr.col], as.character)</pre>
GEOMAGN$GPST <- paste(GEOMAGN$Date,GEOMAGN$Time)</pre>
GEOMAGN$GPST<-as.POSIXct(GEOMAGN$GPST)</pre>
GEOMAGN <- GEOMAGN[,4:7]</pre>
Dst<-read.csv(file='Dst2017.dat', skip = 17, header =TRUE, sep=',')</pre>
Dst<-Dst[,1:4]</pre>
c_names <- c("Date", "Time", "DOY", "Dst")</pre>
colnames(Dst)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
Dst[, fctr.col] <- sapply(Dst[, fctr.col], as.character)</pre>
Dst$GPST <- paste(Dst$Date,Dst$Time)</pre>
Dst$GPST<-as.POSIXct(Dst$GPST)</pre>
Dst <- Dst[,4:5]</pre>
print(Dst)
Kp<-read.csv(file='Kp2017.dat', skip = 35, header =TRUE, sep=',')</pre>
Kp<-Kp[,1:6]</pre>
c_names <- c("Date", "Time", "DOY", "ap", "Kp", "Ap")</pre>
```

```
colnames(Kp)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
Kp[, fctr.col] <- sapply(Kp[, fctr.col], as.character)</pre>
Kp$GPST <- paste(Kp$Date,Kp$Time)</pre>
Kp$GPST<-as.POSIXct(Kp$GPST)</pre>
Kp$Kp<-as.numeric(Kp$Kp)</pre>
Kp$ap<-as.numeric(Kp$ap)</pre>
Kp$Ap<-as.numeric(Kp$Ap)</pre>
Kp <- Kp[,5:7]</pre>
print(Kp)
total <- merge(GEOMAGN,POS ON,by="GPST", all.x=TRUE)</pre>
total <- merge(total, Dst, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Kp, by = "GPST", all.x = TRUE)</pre>
summary(total)
install.packages("dplyr")
library(dplyr)
total <- total %>%
  select(c(1, 2, 3, 4, 8, 9, 10, 11, 12, 13,))
write.csv(file='all_observations2.csv', total, row.names = FALSE)
stats<-lapply(total, function(x) matrix(summary(x)))</pre>
stats<-lapply(stats, function(x) as.data.frame(x))</pre>
stats<-lapply(stats, function(x) x[1:6,])</pre>
stats<-do.call(cbind.data.frame, stats)</pre>
row.names(stats)<-c("MIN", "1stQ","Median","Mean","3rdQ","MAX")</pre>
stats<-stats[,2:10]</pre>
summary(stats)
write.csv(file='mean_stats2.csv', stats, row.names = FALSE)
plot(x = total$GPST, y= total$X, col="red",ylim=c(min(stats$X),
max(stats$X)), type ='1',
```

```
main = 'Jakost X komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
     ylab ='X [nT]')
hist(total$X, col="blue", xlab="Vrijednosti X komponente", ylab="Učestalost",
breaks=100,
     main="Histogram X komponente", xlim=c(min(stats$X), max(stats$X)))
plot(x = total$GPST, y= total$Y, col="red",ylim=c(min(stats$Y),
max(stats$Y)), type ='1',
     main = 'Jakost Y komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
     ylab ='Y [nT]')
hist(total$Y, col="red", xlab="Vrijednosti Y komponente", ylab="Učestalost",
breaks=100,
     main="Histogram Y komponente", xlim=c(min(stats$Y), max(stats$Y)))
plot(x = total$GPST, y= total$Z, col="red",ylim=c(min(stats$Z),
max(stats$Z)), type ='1',
     main = 'Jakost Z komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
     ylab ='Z [nT]')
hist(total$Z, col="green", xlab="Vrijednosti Z komponente",
ylab="Učestalost", breaks=100,
     main="Histogram Z komponente", xlim=c(min(stats$Z), max(stats$Z)))
total hour<-rep(seq(1,120), each = 60)
agg<- total %>%
  group by(hour) %>%
  summarize(mean lat = mean(lat m, na.rm = TRUE),
            mean lon = mean(lon m, na.rm = TRUE),
            mean h = mean(h m, na.rm = TRUE),
            mean X = mean(X, na.rm = TRUE),
            mean Y = mean(Y, na.rm = TRUE),
            mean_Z = mean(Z, na.rm = TRUE),
            Dst=mean(Dst, na.rm = TRUE),
```

```
Kp=mean(Kp, na.rm = TRUE),
Ap=mean(Ap, na.rm = TRUE))
agg<-na.omit(agg)
install.packages("corrplot")
library('corrplot')
corr<-cor(agg[2:10])
print(corr)
corrplot(corr, type = "upper",
tl.col = "black", tl.srt = 45)
```

HNUS00ZAF

```
files_on<-Sys.glob('*ON*.pos')
pos_on<-lapply(files_on, function(x) read.csv(x, skip=12, sep = ','))
pos_on<-lapply(pos_on, function(x) x[1:4])
ref_pos<-c(-34.42463056,19.22306111,63)</pre>
```

```
dev_mtr_iono <- function(ref_pos,df) {
    d_lat<-(ref_pos[1]-df[,2])
    d_lon<-(ref_pos[2]-df[,3])
    d_h<-(ref_pos[3]-df[,4])
    cos_lat<-(cos(ref_pos[1]*pi/180))
    lat_m<-(d_lat*60*1852)
    lon_m<-(d_lon*60*1852*cos_lat)
    df$lat_m<-lat_m
    df$lon_m<-lon_m
    df$h_m<-d_h
    return(df)
}
pos_on<-lapply(pos_on,function(x) dev_mtr_iono(ref_pos,x))</pre>
```
```
POS ON<-do.call(rbind.data.frame,pos on)
cols = c("GPST","lat", "lon", "height", "lat m", "lon m", "h m")
colnames(POS ON)<-cols</pre>
POS ON$GPST<-as.POSIXct(POS ON$GPST)</pre>
summary(POS ON)
sd(POS ON$lat m)
sd(POS ON$lon m)
sd(POS ON$h m)
rows<-names(summary(POS_ON$lat_m))</pre>
summary lat m on<-as.data.frame(matrix(summary(POS ON$lat m)))</pre>
summary lat m on<-rbind(summary lat m on,sd(POS ON$lat m))</pre>
summary(POS ON$lon m)
rows<-names(summary(POS_ON$lon_m))</pre>
summary_lon_m_on<-as.data.frame(matrix(summary(POS_ON$lon_m)))</pre>
summary lon m on<-rbind(summary lon m on,sd(POS ON$lon m))</pre>
rows<-names(summary(POS_ON$h_m))</pre>
summary_h_m_on<-as.data.frame(matrix(summary(POS_ON$h_m)))</pre>
summary_h_m_on<-rbind(summary_h_m_on,sd(POS_ON$h_m))</pre>
cols<-c('lat_m', 'lon_m', 'h_m')</pre>
stats_on<-cbind.data.frame(summary_lat_m_on,summary_lon_m_on, summary_h_m_on)</pre>
# 'on'!!
rownames(stats_on)<-c(rows, 'sd')</pre>
colnames(stats on)<-cols</pre>
print(stats on)
write.csv(file='stats on.csv', stats on)
plot(x = POS_ON$GPST, y =POS_ON$lat_m, col="red",ylim=c(min(stats_on$h_m),
max(stats_on$h_m)),type ='1',
     main = 'IGS HNUS00ZAF: DOY 249 - 253 /2017', xlab = 'Vrijeme (dani)',
     ylab ='Odstupanja (m)')
grid(nx = NULL, ny = NULL, col = "lightgray", lty = "dotted")
```

```
points(x = POS ON$GPST, y = POS ON$lon m, col ='blue', type='l')
points(x = POS ON$GPST, y = POS ON$h m, col ='darkgreen',type='l')
legend("topleft", legend=c("lat_m", "lon_m", "h_m"),
       col=c("red", "blue", "darkgreen"), bg="transparent", lty=c(1,1),
cex=1)
files_on<-Sys.glob('*min*.min')</pre>
geomag<-lapply(files_on, function(x) read.csv(x, skip = 24, header =TRUE,</pre>
sep=','))
geomag<-lapply(geomag, function(x) x[,1:6])</pre>
GEOMAGN<-do.call(rbind.data.frame,geomag)</pre>
c names <- c("Date", "Time", "DOY", "X", "Y", "Z")</pre>
colnames(GEOMAGN)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
GEOMAGN[, fctr.col] <- sapply(GEOMAGN[, fctr.col], as.character)</pre>
GEOMAGN$GPST <- paste(GEOMAGN$Date,GEOMAGN$Time)</pre>
GEOMAGN$GPST<-as.POSIXct(GEOMAGN$GPST)</pre>
GEOMAGN <- GEOMAGN[,4:7]</pre>
Dst<-read.csv(file='Dst2017.dat', skip = 17, header =TRUE, sep=',')</pre>
Dst<-Dst[,1:4]</pre>
c_names <- c("Date", "Time", "DOY", "Dst")</pre>
colnames(Dst)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
Dst[, fctr.col] <- sapply(Dst[, fctr.col], as.character)</pre>
Dst$GPST <- paste(Dst$Date,Dst$Time)</pre>
Dst$GPST<-as.POSIXct(Dst$GPST)</pre>
Dst <- Dst[,4:5]</pre>
print(Dst)
Kp<-read.csv(file='Kp2017.dat', skip = 35, header =TRUE, sep=',')</pre>
Kp<-Kp[,1:6]</pre>
c_names <- c("Date", "Time", "DOY", "ap", "Kp", "Ap")</pre>
```

```
colnames(Kp)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
Kp[, fctr.col] <- sapply(Kp[, fctr.col], as.character)</pre>
Kp$GPST <- paste(Kp$Date,Kp$Time)</pre>
Kp$GPST<-as.POSIXct(Kp$GPST)</pre>
Kp$Kp<-as.numeric(Kp$Kp)</pre>
Kp$ap<-as.numeric(Kp$ap)</pre>
Kp$Ap<-as.numeric(Kp$Ap)</pre>
Kp <- Kp[,5:7]</pre>
print(Kp)
total <- merge(GEOMAGN,POS ON,by="GPST", all.x=TRUE)</pre>
total <- merge(total, Dst, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Kp, by = "GPST", all.x = TRUE)</pre>
summary(total)
install.packages("dplyr")
library(dplyr)
total <- total %>%
  select(c(1, 2, 3, 4, 8, 9, 10, 11, 12, 13,))
write.csv(file='all_observations2.csv', total, row.names = FALSE)
stats<-lapply(total, function(x) matrix(summary(x)))</pre>
stats<-lapply(stats, function(x) as.data.frame(x))</pre>
stats<-lapply(stats, function(x) x[1:6,])</pre>
stats<-do.call(cbind.data.frame, stats)</pre>
row.names(stats)<-c("MIN", "1stQ","Median","Mean","3rdQ","MAX")</pre>
stats<-stats[,2:10]</pre>
summary(stats)
write.csv(file='mean_stats3.csv', stats, row.names = FALSE)
plot(x = total$GPST, y= total$X, col="red",ylim=c(min(stats$X),
max(stats$X)), type ='1',
```

```
main = 'Jakost X komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
     ylab ='X [nT]')
hist(total$X, col="blue", xlab="Vrijednosti X komponente", ylab="Učestalost",
breaks=100,
     main="Histogram X komponente", xlim=c(min(stats$X), max(stats$X)))
plot(x = total$GPST, y= total$Y, col="red",ylim=c(min(stats$Y),
max(stats$Y)), type ='1',
     main = 'Jakost Y komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
     ylab ='Y [nT]')
hist(total$Y, col="red", xlab="Vrijednosti Y komponente", ylab="Učestalost",
breaks=100,
     main="Histogram Y komponente", xlim=c(min(stats$Y), max(stats$Y)))
plot(x = total$GPST, y= total$Z, col="red",ylim=c(min(stats$Z),
max(stats$Z)), type ='1',
     main = 'Jakost Z komponente [nT], DOY 249-253/2017', xlab = 'Vrijeme
(dani)',
     ylab ='Z [nT]')
hist(total$Z, col="green", xlab="Vrijednosti Z komponente",
ylab="Učestalost", breaks=100,
     main="Histogram Z komponente", xlim=c(min(stats$Z), max(stats$Z)))
total hour<-rep(seq(1,120), each = 60)
agg<- total %>%
  group by(hour) %>%
  summarize(mean lat = mean(lat m, na.rm = TRUE),
            mean lon = mean(lon m, na.rm = TRUE),
            mean h = mean(h m, na.rm = TRUE),
            mean X = mean(X, na.rm = TRUE),
            mean Y = mean(Y, na.rm = TRUE),
            mean_Z = mean(Z, na.rm = TRUE),
            Dst=mean(Dst, na.rm = TRUE),
```

```
Kp=mean(Kp, na.rm = TRUE),
Ap=mean(Ap, na.rm = TRUE))
agg<-na.omit(agg)
install.packages("corrplot")
library('corrplot')
corr<-cor(agg[2:10])
print(corr)
corrplot(corr, type = "upper",
tl.col = "black", tl.srt = 45)
```

MIRNI DAN PROMATRANOG PERIODA

```
pos1<-read.csv(file='nyal2490.pos', skip = 12, header =TRUE, sep=',')</pre>
c_names <- c("GPST", "lat", "lon", "H", "Q", "n_sat", "sd_n", "sd_e", "sd_u",</pre>
              "sd ne", "sd_eu", "sd_un", "age", "ratio")
colnames(pos1)<- c names</pre>
pos1<-pos1[,1:4]</pre>
pos1$GPST<-as.POSIXct(pos1$GPST)</pre>
pos2<-read.csv(file='pado2490.pos', skip = 12, header =TRUE, sep=',')</pre>
c names <- c("GPST", "lat", "lon", "H", "Q", "n sat", "sd n", "sd e", "sd u",
              "sd ne", "sd eu", "sd un", "age", "ratio")
colnames(pos2)<- c names</pre>
pos2<-pos2[,1:4]
pos2$GPST<-as.POSIXct(pos2$GPST)</pre>
pos3<-read.csv(file='nklg2490.pos', skip = 12, header =TRUE, sep=',')</pre>
c_names <- c("GPST", "lat", "lon", "H", "Q", "n_sat", "sd_n", "sd_e", "sd_u",</pre>
              "sd_ne", "sd_eu", "sd_un", "age", "ratio")
colnames(pos3)<- c_names</pre>
pos3<-pos3[,1:4]</pre>
pos3$GPST<-as.POSIXct(pos3$GPST)</pre>
```

```
pos4<-read.csv(file='HNUS2490.pos', skip = 12, header =TRUE, sep=',')</pre>
c_names <- c("GPST", "lat", "lon", "H", "Q", "n_sat", "sd_n", "sd_e", "sd_u",</pre>
               "sd_ne", "sd_eu", "sd_un", "age", "ratio")
colnames(pos4)<- c names</pre>
pos4<-pos4[,1:4]
pos4$GPST<-as.POSIXct(pos4$GPST)</pre>
geom1<-read.csv(file='hrn20170906dmin.min', skip = 24, header =TRUE, sep=',')</pre>
geom1<-geom1[,1:6]</pre>
c_names <- c("Date", "Time", "DOY", "X1", "Y1", "Z1")</pre>
colnames(geom1)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
geom1[, fctr.col] <- sapply(geom1[, fctr.col], as.character)</pre>
geom1$GPST <- paste(geom1$Date,geom1$Time)</pre>
geom1$GPST<-as.POSIXct(geom1$GPST)</pre>
geom1 <- geom1[,4:7]</pre>
geom2<-read.csv(file='lon20170906dmin.min', skip = 24, header =TRUE, sep=',')</pre>
geom2<-geom2[,1:6]</pre>
c_names <- c("Date", "Time", "DOY", "X2", "Y2", "Z2")</pre>
colnames(geom2)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
geom2[, fctr.col] <- sapply(geom2[, fctr.col], as.character)</pre>
geom2$GPST <- paste(geom2$Date,geom2$Time)</pre>
geom2$GPST<-as.POSIXct(geom2$GPST)</pre>
geom2 <- geom2[,4:7]</pre>
geom3<-read.csv(file='asc20170906dmin.min', skip = 24, header =TRUE, sep=',')</pre>
geom3<-geom3[,1:6]</pre>
c_names <- c("Date", "Time", "DOY", "X3", "Y3", "Z3")</pre>
colnames(geom3)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
geom3[, fctr.col] <- sapply(geom3[, fctr.col], as.character)</pre>
```

```
geom3$GPST <- paste(geom3$Date,geom3$Time)</pre>
geom3$GPST<-as.POSIXct(geom3$GPST)</pre>
geom3 <- geom3[,4:7]</pre>
geom4<-read.csv(file='lon20170906dmin.min', skip = 24, header =TRUE, sep=',')</pre>
geom4 < -geom4[,1:6]
c names <- c("Date", "Time", "DOY", "X4", "Y4", "Z4")</pre>
colnames(geom4)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
geom4[, fctr.col] <- sapply(geom4[, fctr.col], as.character)</pre>
geom4$GPST <- paste(geom4$Date,geom4$Time)</pre>
geom4$GPST<-as.POSIXct(geom4$GPST)</pre>
geom4 <- geom4[,4:7]</pre>
Dst<-read.csv(file='Dst2017.dat', skip = 17, header =TRUE, sep=',')</pre>
Dst<-Dst[,1:4]</pre>
c_names <- c("Date", "Time", "DOY", "Dst")</pre>
colnames(Dst)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
Dst[, fctr.col] <- sapply(Dst[, fctr.col], as.character)</pre>
Dst$GPST <- paste(Dst$Date,Dst$Time)</pre>
Dst$GPST<-as.POSIXct(Dst$GPST)</pre>
Dst <- Dst[,4:5]</pre>
print(Dst)
Kp<-read.csv(file='Kp2017.dat', skip = 35, header =TRUE, sep=',')</pre>
Kp<-Kp[,1:6]</pre>
c_names <- c("Date", "Time", "DOY", "ap", "Kp", "Ap")</pre>
colnames(Kp)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
Kp[, fctr.col] <- sapply(Kp[, fctr.col], as.character)</pre>
Kp$GPST <- paste(Kp$Date,Kp$Time)</pre>
Kp$GPST<-as.POSIXct(Kp$GPST)</pre>
```

```
Kp$Kp<-as.numeric(Kp$Kp)</pre>
Kp$ap<-as.numeric(Kp$ap)</pre>
Kp$Ap<-as.numeric(Kp$Ap)</pre>
Kp <- Kp[,5:7]</pre>
print(Kp)
Ae<-read.csv(file='Ae2017.dat', skip = 17, header =TRUE, sep=',')</pre>
Ae<-Ae[,1:4]
c_names <- c("Date", "Time", "DOY", "Ae")</pre>
colnames(Ae)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
Ae[, fctr.col] <- sapply(Ae[, fctr.col], as.character)</pre>
Ae$GPST <- paste(Ae$Date,Ae$Time)</pre>
Ae$GPST<-as.POSIXct(Ae$GPST)</pre>
Ae <- Ae[,4:5]
lat1<-78.9296
lon1<-11.8651
H1<- 79
d_lat1<-(lat1-pos1$lat)</pre>
d_lon1<-(lon1-pos1$lon)</pre>
d_h1<-(H1-pos1$H)</pre>
cos_lat1<-(cos(lat1*pi/180))</pre>
lat_m1<-(d_lat1*60*1852)</pre>
lon_m1<-(d_lon1*60*1852*cos_lat1)</pre>
dev1<-as.data.frame(cbind(lat_m1, lon_m1, d_h1))</pre>
dev1$GPST<-pos1$GPST</pre>
dev1<-as.data.frame(cbind(lat_m1, lon_m1, d_h1))</pre>
dev1$GPST<-pos1$GPST</pre>
write.csv(file='pos_devs_nyal_0609.csv', dev1,row.names = FALSE)
lat2<-45.411166146
lon2<-11.896064765
```

```
H2<- 63
d lat2<-(lat2-pos2$lat)</pre>
d_lon2<-(lon2-pos2$lon)</pre>
d_h2 < -(H2 - pos2$H)
cos_lat2<-(cos(lat2*pi/180))</pre>
lat_m2<-(d_lat2*60*1852)</pre>
lon_m2<-(d_lon2*60*1852*cos_lat2)</pre>
dev2<-as.data.frame(cbind(lat_m2, lon_m2, d_h2))</pre>
dev2$GPST<-pos2$GPST</pre>
dev2<-as.data.frame(cbind(lat m2, lon m2, d h2))</pre>
dev2$GPST<-pos2$GPST</pre>
write.csv(file='pos_devs_pado_0609.csv', dev2,row.names = FALSE)
lat3<-0.35391667
lon3<-9.67210833
H3<- 32
d_lat3<-(lat3-pos3$lat)</pre>
d_lon3<-(lon3-pos3$lon)</pre>
d_h3<-(H3-pos3$H)
cos_lat3<-(cos(lat3*pi/180))</pre>
lat_m3<-(d_lat3*60*1852)</pre>
lon_m3<-(d_lon3*60*1852*cos_lat3)</pre>
dev3<-as.data.frame(cbind(lat_m3, lon_m3, d_h3))</pre>
dev3$GPST<-pos3$GPST
dev3<-as.data.frame(cbind(lat_m3, lon_m3, d_h3))</pre>
dev3$GPST<-pos3$GPST
write.csv(file='pos_devs_nklg_0609.csv', dev3,row.names = FALSE)
lat4<--34.42463056
lon4<-19.22306111
```

H4<- 63

```
d lat4<-(lat4-pos4$lat)</pre>
d lon4<-(lon4-pos4$lon)</pre>
d_h4<-(H4-pos4$H)
cos_lat4<-(cos(lat4*pi/180))</pre>
lat m4<-(d lat4*60*1852)
lon m4<-(d lon4*60*1852*cos lat4)</pre>
dev4<-as.data.frame(cbind(lat m4, lon m4, d h4))</pre>
dev4$GPST<-pos4$GPST
dev4<-as.data.frame(cbind(lat_m4, lon_m4, d_h4))</pre>
dev4$GPST<-pos4$GPST</pre>
write.csv(file='pos devs hnus 0609.csv', dev4,row.names = FALSE)
total <- merge(dev1,dev2,by="GPST", all.x=TRUE)</pre>
total <- merge(total, dev4, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, geom1, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, geom2, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, geom3, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, geom4, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, dev3, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Ae, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Dst, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Kp, by = "GPST", all.x = TRUE)</pre>
summary(total)
write.csv(file='all_observations.csv', total, row.names = FALSE)
stats<-lapply(total, function(x) matrix(summary(x)))</pre>
stats<-lapply(stats, function(x) as.data.frame(x))</pre>
stats<-lapply(stats, function(x) x[1:6,])</pre>
stats<-do.call(cbind.data.frame, stats)</pre>
row.names(stats)<-c("MIN", "1stQ", "Median", "Mean", "3rdQ", "MAX")</pre>
stats<-stats[,2:29]</pre>
write.csv(file='stats1.csv', stats, row.names = FALSE)
```

```
total hour<-rep(seq(1,24), each = 60)
library('dplyr')
agg<- total %>%
  group_by(hour) %>%
  summarize(mean lat nyal = mean(lat m1, na.rm = TRUE),
            mean lon nyal = mean(lon m1, na.rm = TRUE),
            mean h nyal = mean(d h1, na.rm = TRUE),
            mean X hrn = mean(X1, na.rm = TRUE),
            mean_Y_hrn = mean(Y1, na.rm = TRUE),
            mean Z hrn = mean(Z1, na.rm = TRUE),
            mean lat pado = mean(lat m2, na.rm = TRUE),
            mean lon pado = mean(lon m2, na.rm = TRUE),
            mean_h_pado = mean(d_h2, na.rm = TRUE),
            mean_X_lon = mean(X2, na.rm = TRUE),
            mean Y lon = mean(Y2, na.rm = TRUE),
            mean_Z_lon= mean(Z2, na.rm = TRUE),
            mean_lat_nklg = mean(lat_m3, na.rm = TRUE),
            mean_lon_nklg = mean(lon_m3, na.rm = TRUE),
            mean_h_nklg = mean(d_h3, na.rm = TRUE),
            mean_X_asc = mean(X3, na.rm = TRUE),
            mean_Y_asc = mean(Y3, na.rm = TRUE),
            mean_Z_asc = mean(Z3, na.rm = TRUE),
            mean_lat_hnus = mean(lat_m4, na.rm = TRUE),
            mean_lon_hnus = mean(lon_m4, na.rm = TRUE),
            mean_h_hnus = mean(d_h4, na.rm = TRUE),
            mean_X_her = mean(X4, na.rm = TRUE),
            mean_Y_her = mean(Y4, na.rm = TRUE),
            mean_Z_her= mean(Z4, na.rm = TRUE),
            Dst=mean(Dst, na.rm = TRUE),
            Ae=mean(Dst, na.rm = TRUE),
```

DAN GEOMAGNETSKE OLUJE U PROMATRANOM PERIODU

```
files on1<-Sys.glob('*ON1*.pos')</pre>
pos_on1<-lapply(files_on1, function(x) read.csv(x, skip=12, sep = ','))</pre>
pos_on1<-lapply(pos_on1, function(x) x[1:4])</pre>
ref pos<-c(78.9296,11.8651,79)
dev_mtr_iono <- function(ref_pos,df) {</pre>
  d_lat<-(ref_pos[1]-df[,2])</pre>
  d_lon<-(ref_pos[2]-df[,3])</pre>
  d_h<-(ref_pos[3]-df[,4])</pre>
  cos_lat<-(cos(ref_pos[1]*pi/180))</pre>
  lat m<-(d lat*60*1852)</pre>
  lon_m<-(d_lon*60*1852*cos_lat)</pre>
  df$lat_m<-lat_m
  df$lon m<-lon m
  df$h m<-d h
  return(df)
}
pos_on1<-lapply(pos_on1,function(x) dev_mtr_iono(ref_pos,x))</pre>
POS_ON1<-do.call(rbind.data.frame,pos_on1)</pre>
cols = c("GPST", "lat1", "lon1", "height1", "lat_m1", "lon_m1", "h_m1")
```

colnames(POS_ON1)<-cols</pre>

```
POS_ON1$GPST<-as.POSIXct(POS_ON1$GPST)</pre>
```

```
summary(POS_ON1)
```

```
sd(POS_ON1$lat_m)
```

```
sd(POS_ON1$lon_m)
```

```
sd(POS_ON1$h_m)
```

```
rows<-names(summary(POS_ON1$lat_m))</pre>
```

```
summary_lat_m_on<-as.data.frame(matrix(summary(POS_ON1$lat_m)))</pre>
```

```
summary_lat_m_on<-rbind(summary_lat_m_on,sd(POS_ON1$lat_m))</pre>
```

```
summary(POS_ON1$lon_m)
```

```
rows<-names(summary(POS_ON1$lon_m))</pre>
```

```
summary_lon_m_on<-as.data.frame(matrix(summary(POS_ON1$lon_m)))</pre>
```

```
summary_lon_m_on<-rbind(summary_lon_m_on,sd(POS_ON1$lon_m))</pre>
```

```
rows<-names(summary(POS_ON1$h_m))</pre>
```

```
summary_h_m_on<-as.data.frame(matrix(summary(POS_ON1$h_m)))</pre>
```

```
summary_h_m_on<-rbind(summary_h_m_on,sd(POS_ON1$h_m))</pre>
```

```
cols<-c('lat_m1', 'lon_m1', 'h_m1')</pre>
```

```
stats_on1<-cbind.data.frame(summary_lat_m_on,summary_lon_m_on,
summary_h_m_on) # 'on'!!
```

```
rownames(stats_on1)<-c(rows, 'sd')</pre>
```

```
colnames(stats_on1)<-cols</pre>
```

```
print(stats_on1)
```

```
files_on2<-Sys.glob('*ON2*.pos')</pre>
```

```
pos_on2<-lapply(files_on2, function(x) read.csv(x, skip=12, sep = ','))</pre>
```

```
pos_on2<-lapply(pos_on2, function(x) x[1:4])</pre>
```

```
ref_pos2<-c(45.411166146,11.896064765,64.7)
```

```
dev_mtr_iono <- function(ref_pos2,df) {</pre>
```

```
d_lat<-(ref_pos2[1]-df[,2])</pre>
```

```
d_lon<-(ref_pos2[2]-df[,3])</pre>
```

```
d_h<-(ref_pos2[3]-df[,4])</pre>
```

```
cos lat<-(cos(ref pos2[1]*pi/180))</pre>
  lat m<-(d lat*60*1852)
  lon_m<-(d_lon*60*1852*cos_lat)</pre>
  df$lat m<-lat m
  df$lon m<-lon m
  df$h m<-d h
  return(df)
}
pos_on2<-lapply(pos_on2,function(x) dev_mtr_iono(ref_pos2,x))</pre>
POS ON2<-do.call(rbind.data.frame,pos on2)</pre>
cols = c("GPST", "lat2", "lon2", "height2", "lat m2", "lon m2", "h m2")
colnames(POS ON2)<-cols</pre>
POS_ON2$GPST<-as.POSIXct(POS_ON2$GPST)</pre>
summary(POS_ON2)
sd(POS ON2$lat m)
sd(POS ON2$lon m)
sd(POS_ON2$h_m)
rows<-names(summary(POS_ON2$lat_m1)) # imena statističkih pokazatelja iz
summary() funkcije
summary lat m on<-as.data.frame(matrix(summary(POS ON2$lat m))) # spremanje</pre>
statističkih pokazaetelja iz summary() funkcije - obratimo pažnju na ime:
'summary lat m on' - da se ne zabunimo kasnije, dodao sam 'on' - da znamo da
se radi o modeliranim zapisima
summary lat m on<-rbind(summary lat m on,sd(POS ON2$lat m)) # spajamo sve
statističke pokazatelje po recima, uz dodavanje standardne devijacije koju ne
dobivamo 'summary()' naredbom
summary(POS_ON2$lon_m)
rows<-names(summary(POS_ON2$lon_m))</pre>
summary_lon_m_on<-as.data.frame(matrix(summary(POS_ON2$lon_m)))</pre>
summary lon m on<-rbind(summary lon m on,sd(POS ON2$lon m))</pre>
rows<-names(summary(POS_ON2$h_m))</pre>
summary_h_m_on<-as.data.frame(matrix(summary(POS_ON2$h_m)))</pre>
```

```
summary h m on<-rbind(summary h m on,sd(POS ON2$h m))</pre>
cols<-c('lat_m2', 'lon_m2', 'h_m2')</pre>
stats_on2<-cbind.data.frame(summary_lat_m_on,summary_lon_m_on,</pre>
summary_h_m_on) # 'on'!!
rownames(stats_on2)<-c(rows, 'sd')</pre>
colnames(stats_on2)<-cols</pre>
print(stats_on2)
files_on3<-Sys.glob('*ON3*.pos')</pre>
pos_on3<-lapply(files_on3, function(x) read.csv(x, skip=12, sep = ','))</pre>
pos_on3<-lapply(pos_on3, function(x) x[1:4])</pre>
ref_pos3<-c(0.35391667,9.67210833,32)</pre>
dev_mtr_iono <- function(ref_pos3,df) {</pre>
  d_lat<-(ref_pos3[1]-df[,2])</pre>
  d_lon<-(ref_pos3[2]-df[,3])</pre>
  d_h<-(ref_pos3[3]-df[,4])</pre>
  cos_lat<-(cos(ref_pos3[1]*pi/180))</pre>
  lat m<-(d lat*60*1852)</pre>
  lon_m<-(d_lon*60*1852*cos_lat)</pre>
  df$lat_m<-lat_m
  df$lon m<-lon m
  df$h_m<-d_h
  return(df)
}
pos on3<-lapply(pos on3,function(x) dev mtr iono(ref pos3,x))</pre>
POS_ON3<-do.call(rbind.data.frame,pos_on3)</pre>
cols = c("GPST", "lat3", "lon3", "height3", "lat_m3", "lon_m3", "h_m3")
colnames(POS ON3)<-cols</pre>
POS ON3$GPST<-as.POSIXct(POS ON3$GPST)</pre>
summary(POS_ON3)
```

sd(POS_ON3\$lat_m)

sd(POS_ON3\$lon_m)

sd(POS_ON3\$h_m)

```
rows<-names(summary(POS_ON3$lat_m))</pre>
```

```
summary_lat_m_on<-as.data.frame(matrix(summary(POS_ON3$lat_m)))</pre>
```

```
summary_lat_m_on<-rbind(summary_lat_m_on,sd(POS_ON3$lat_m))</pre>
```

```
summary(POS_ON3$lon_m)
```

```
rows<-names(summary(POS_ON3$lon_m))</pre>
```

```
summary_lon_m_on<-as.data.frame(matrix(summary(POS_ON3$lon_m)))</pre>
```

```
summary_lon_m_on<-rbind(summary_lon_m_on,sd(POS_ON3$lon_m))</pre>
```

```
rows<-names(summary(POS_ON3$h_m))</pre>
```

```
summary_h_m_on<-as.data.frame(matrix(summary(POS_ON3$h_m)))</pre>
```

```
summary_h_m_on<-rbind(summary_h_m_on,sd(POS_ON3$h_m))</pre>
```

```
cols<-c('lat_m3', 'lon_m3', 'h_m3')</pre>
```

```
stats_on3<-cbind.data.frame(summary_lat_m_on,summary_lon_m_on,
summary_h_m_on) # 'on'!!
```

```
rownames(stats_on3)<-c(rows, 'sd')</pre>
```

```
colnames(stats on3)<-cols</pre>
```

```
print(stats_on3)
```

```
files_on4<-Sys.glob('*ON4*.pos')</pre>
```

```
pos_on4<-lapply(files_on4, function(x) read.csv(x, skip=12, sep = ','))</pre>
```

```
pos_on4<-lapply(pos_on4, function(x) x[1:4])</pre>
```

```
ref_pos4<-c(-34.42463056,19.22306111,63)
```

```
dev_mtr_iono <- function(ref_pos4,df) {</pre>
```

```
d_lat<-(ref_pos4[1]-df[,2])</pre>
```

```
d_lon<-(ref_pos4[2]-df[,3])</pre>
```

```
d_h<-(ref_pos4[3]-df[,4])</pre>
```

```
cos_lat<-(cos(ref_pos4[1]*pi/180))</pre>
```

```
lat_m<-(d_lat*60*1852)</pre>
```

```
lon_m<-(d_lon*60*1852*cos_lat)</pre>
```

```
df$lat m<-lat m
  df$lon m<-lon m
  df$h_m<-d_h
  return(df)
}
pos on4<-lapply(pos on4,function(x) dev mtr iono(ref pos4,x))</pre>
POS ON4<-do.call(rbind.data.frame,pos on4)</pre>
cols = c("GPST", "lat4", "lon4", "height4", "lat_m4", "lon_m4", "h_m4")
colnames(POS ON4)<-cols</pre>
POS ON4$GPST<-as.POSIXct(POS ON4$GPST)</pre>
summary(POS ON4)
sd(POS ON4$lat m)
sd(POS_ON4$lon_m)
sd(POS_ON4$h_m)
rows<-names(summary(POS ON4$lat m))</pre>
summary_lat_m_on<-as.data.frame(matrix(summary(POS_ON4$lat_m)))</pre>
summary_lat_m_on<-rbind(summary_lat_m_on,sd(POS_ON4$lat_m))</pre>
summary(POS_ON4$lon_m)
rows<-names(summary(POS_ON4$lon_m))</pre>
summary_lon_m_on<-as.data.frame(matrix(summary(POS_ON4$lon_m)))</pre>
summary_lon_m_on<-rbind(summary_lon_m_on,sd(POS_ON4$lon_m))</pre>
rows<-names(summary(POS_ON4$h_m))</pre>
summary_h_m_on<-as.data.frame(matrix(summary(POS_ON4$h_m)))</pre>
summary_h_m_on<-rbind(summary_h_m_on,sd(POS_ON4$h_m))</pre>
cols<-c('lat_m4', 'lon_m4', 'h_m4')</pre>
stats_on4<-cbind.data.frame(summary_lat_m_on,summary_lon_m_on,</pre>
summary_h_m_on) # 'on'!!
rownames(stats on4)<-c(rows, 'sd')</pre>
colnames(stats on4)<-cols</pre>
print(stats_on4)
```

```
files on5<-Sys.glob('*min 1*.min')</pre>
geomag1 < -lapply(files on5, function(x) read.csv(x, skip = 24, header = TRUE,
sep=','))
geomag1<-lapply(geomag1, function(x) x[,1:6])</pre>
GEOMAGN1<-do.call(rbind.data.frame,geomag1)</pre>
c_names <- c("Date", "Time", "DOY", "X1", "Y1", "Z1")</pre>
colnames(GEOMAGN1)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
GEOMAGN1[, fctr.col] <- sapply(GEOMAGN1[, fctr.col], as.character)</pre>
GEOMAGN1$GPST <- paste(GEOMAGN1$Date,GEOMAGN1$Time)</pre>
GEOMAGN1$GPST<-as.POSIXct(GEOMAGN1$GPST)</pre>
GEOMAGN1 <- GEOMAGN1[,4:7]</pre>
files on6<-Sys.glob('*min 2*.min')</pre>
geomag2 < -lapply(files on6, function(x) read.csv(x, skip = 24, header = TRUE,
sep=','))
geomag2<-lapply(geomag2, function(x) x[,1:6])</pre>
GEOMAGN2<-do.call(rbind.data.frame,geomag2)</pre>
c_names <- c("Date", "Time", "DOY", "X2", "Y2", "Z2")</pre>
colnames(GEOMAGN2)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
GEOMAGN2[, fctr.col] <- sapply(GEOMAGN2[, fctr.col], as.character)</pre>
GEOMAGN2$GPST <- paste(GEOMAGN2$Date,GEOMAGN2$Time)</pre>
GEOMAGN2$GPST<-as.POSIXct(GEOMAGN2$GPST)</pre>
GEOMAGN2 <- GEOMAGN2[,4:7]</pre>
files_on7<-Sys.glob('*min_3*.min')</pre>
geomag3<-lapply(files_on7, function(x) read.csv(x, skip = 24, header =TRUE,</pre>
sep=','))
geomag3<-lapply(geomag3, function(x) x[,1:6])</pre>
GEOMAGN3<-do.call(rbind.data.frame,geomag3)</pre>
c names <- c("Date", "Time", "DOY", "X3", "Y3", "Z3")</pre>
colnames(GEOMAGN3)<- c names</pre>
```

```
fctr.col<-c("Date", "Time")</pre>
GEOMAGN3[, fctr.col] <- sapply(GEOMAGN3[, fctr.col], as.character)</pre>
GEOMAGN3$GPST <- paste(GEOMAGN3$Date,GEOMAGN3$Time)</pre>
GEOMAGN3$GPST<-as.POSIXct(GEOMAGN3$GPST)</pre>
GEOMAGN3 <- GEOMAGN3[,4:7]</pre>
files on8<-Sys.glob('*min 4*.min')</pre>
geomag4<-lapply(files on8, function(x) read.csv(x, skip = 24, header =TRUE,
sep=','))
geomag4<-lapply(geomag4, function(x) x[,1:6])</pre>
GEOMAGN4<-do.call(rbind.data.frame,geomag4)</pre>
c_names <- c("Date", "Time", "DOY", "X4", "Y4", "Z4")</pre>
colnames(GEOMAGN4)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
GEOMAGN4[, fctr.col] <- sapply(GEOMAGN4[, fctr.col], as.character)</pre>
GEOMAGN4$GPST <- paste(GEOMAGN4$Date,GEOMAGN4$Time)</pre>
GEOMAGN4$GPST<-as.POSIXct(GEOMAGN4$GPST)</pre>
GEOMAGN4 <- GEOMAGN4[,4:7]</pre>
Dst<-read.csv(file='Dst2017.dat', skip = 17, header =TRUE, sep=',')</pre>
Dst<-Dst[,1:4]</pre>
c_names <- c("Date", "Time", "DOY", "Dst")</pre>
colnames(Dst)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
Dst[, fctr.col] <- sapply(Dst[, fctr.col], as.character)</pre>
Dst$GPST <- paste(Dst$Date,Dst$Time)</pre>
Dst$GPST<-as.POSIXct(Dst$GPST)</pre>
Dst <- Dst[,4:5]</pre>
print(Dst)
Kp<-read.csv(file='Kp2017.dat', skip = 35, header =TRUE, sep=',')</pre>
Kp<-Kp[,1:6]</pre>
c_names <- c("Date", "Time", "DOY", "ap", "Kp", "Ap")</pre>
```

```
colnames(Kp)<- c names</pre>
fctr.col<-c("Date", "Time")</pre>
Kp[, fctr.col] <- sapply(Kp[, fctr.col], as.character)</pre>
Kp$GPST <- paste(Kp$Date,Kp$Time)</pre>
Kp$GPST<-as.POSIXct(Kp$GPST)</pre>
Kp$Kp<-as.numeric(Kp$Kp)</pre>
Kp$ap<-as.numeric(Kp$ap)</pre>
Kp$Ap<-as.numeric(Kp$Ap)</pre>
Kp <- Kp[,5:7]</pre>
print(Kp)
Ae<-read.csv(file='Ae2017.dat', skip = 17, header =TRUE, sep=',')
Ae<-Ae[,1:4]
c_names <- c("Date", "Time", "DOY", "Ae")</pre>
colnames(Ae)<- c_names</pre>
fctr.col<-c("Date", "Time")</pre>
Ae[, fctr.col] <- sapply(Ae[, fctr.col], as.character)</pre>
Ae$GPST <- paste(Ae$Date,Ae$Time)</pre>
Ae$GPST<-as.POSIXct(Ae$GPST)</pre>
Ae <- Ae[,4:5]
total <- merge(POS_ON1,POS_ON2,by="GPST", all.x=TRUE)</pre>
total <- merge(total, POS_ON3, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, GEOMAGN1, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, GEOMAGN2, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, GEOMAGN3, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, GEOMAGN4, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, POS_ON4, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Ae, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Dst, by = "GPST", all.x = TRUE)</pre>
total <- merge(total, Kp, by = "GPST", all.x = TRUE)</pre>
summary(total)
```

```
install.packages("dplyr")
library(dplyr)
total <- total %>%
  select(c(1, 5, 6, 7, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41,))
stats<-lapply(total, function(x) matrix(summary(x)))</pre>
stats<-lapply(stats, function(x) as.data.frame(x))</pre>
stats<-lapply(stats, function(x) x[1:6,])</pre>
stats<-do.call(cbind.data.frame, stats)</pre>
row.names(stats)<-c("MIN", "1stQ","Median","Mean","3rdQ","MAX")</pre>
stats<-stats[,2:29]</pre>
summary(stats)
total + our <- rep(seq(1,48), each = 60)
agg<- total %>%
  group_by(hour) %>%
  summarize(mean_lat_nyal = mean(lat_m1, na.rm = TRUE),
            mean_lon_nyal = mean(lon_m1, na.rm = TRUE),
            mean h nyal = mean(h m1, na.rm = TRUE),
            mean X hrn = mean(X1, na.rm = TRUE),
            mean_Y_hrn = mean(Y1, na.rm = TRUE),
            mean_Z_hrn = mean(Z1, na.rm = TRUE),
            mean_lat_pado = mean(lat_m2, na.rm = TRUE),
            mean lon pado = mean(lon m2, na.rm = TRUE),
            mean h pado = mean(h m2, na.rm = TRUE),
            mean X lon = mean(X2, na.rm = TRUE),
            mean_Y_lon = mean(Y2, na.rm = TRUE),
            mean_Z_lon= mean(Z2, na.rm = TRUE),
            mean lat nklg = mean(lat m3, na.rm = TRUE),
            mean_lon_nklg = mean(lon_m3, na.rm = TRUE),
            mean_h_nklg = mean(h_m3, na.rm = TRUE),
```

```
mean_X_asc = mean(X3, na.rm = TRUE),
            mean_Y_asc = mean(Y3, na.rm = TRUE),
            mean_Z_asc = mean(Z3, na.rm = TRUE),
            mean_lat_hnus = mean(lat_m4, na.rm = TRUE),
            mean_lon_hnus = mean(lon_m4, na.rm = TRUE),
            mean_h_hnus = mean(h_m4, na.rm = TRUE),
            mean_X_her = mean(X4, na.rm = TRUE),
            mean_Y_her = mean(Y4, na.rm = TRUE),
            mean_Z_her= mean(Z4, na.rm = TRUE),
            Dst=mean(Dst, na.rm = TRUE),
            Ae=mean(Dst, na.rm = TRUE),
            Kp=mean(Kp, na.rm = TRUE))
agg<-na.omit(agg)</pre>
install.packages("corrplot")
library('corrplot')
corr<-cor(agg[2:28])</pre>
print(corr)
write.csv(file='danolujekorelacija.csv', corr, row.names = FALSE)
corrplot(corr, type = "upper",
         tl.col = "black", tl.srt = 45)
```