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Abstract: Instantaneous frequency (IF) is commonly used in the analysis of electroencephalogram
(EEG) signals to detect oscillatory-type seizures. However, IF cannot be used to analyze seizures that
appear as spikes. In this paper, we present a novel method for the automatic estimation of IF and
group delay (GD) in order to detect seizures with both spike and oscillatory characteristics. Unlike
previous methods that use IF alone, the proposed method utilizes information obtained from localized
Rényi entropies (LREs) to generate a binary map that automatically identifies regions requiring a
different estimation strategy. The method combines IF estimation algorithms for multicomponent
signals with time and frequency support information to improve signal ridge estimation in the
time–frequency distribution (TFD). Our experimental results indicate the superiority of the proposed
combined IF and GD estimation approach over the IF estimation alone, without requiring any prior
knowledge about the input signal. The LRE-based mean squared error and mean absolute error
metrics showed improvements of up to 95.70% and 86.79%, respectively, for synthetic signals and up
to 46.45% and 36.61% for real-life EEG seizure signals.

Keywords: time–frequency distributions; Rényi entropy; instantaneous frequency; group delay; EEG

1. Introduction

Electroencephalogram (EEG) recordings are widely used for assessing brain disorders [1–3].
EEG is a noninvasive approach for detecting and predicting seizures [4–7], which can be difficult
to identify in infants. Recurrent seizures are the hallmark of epilepsy, one of the most prevalent
neurological disorders in humans. Identifying seizures in EEG recordings typically requires
real-time observation by a neurologist, leading to growing interest in automated methods for
seizure detection.

EEG signals are nonstationary, and therefore, time–frequency (TF) and time-scale
representations are commonly used for their analysis [6,8–21]. A time–frequency distri-
bution (TFD) enables us to describe signal energy simultaneously in time and frequency.
However, the most widely used TFDs, the quadratic TFDs (QTFDs), create highly oscilla-
tory artifacts, known as cross-terms, for signals with several components or at least one
nonlinear frequency-modulated (non-LFM) component [22–24]. Although the 2D low-pass
filters in the ambiguity function (AF) domain are often used to suppress cross-terms, they
may also suppress important components known as autoterms, resulting in a trade-off
between cross-term reduction and autoterm resolution. To overcome this trade-off, a variety
of filtering methods in the TF domain have been developed [22,25] as an alternative to
conventional filtering methods utilizing nonstationary signals in the time domain [26–28].
One of these advanced filtering methods that outperforms others is the adaptive directional
TFD (ADTFD), which achieves high resolution for multicomponent signals having multiple
directions of energy distribution in the TF domain, such as EEG seizure signals [7,29–32].
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Instantaneous frequency (IF) provides vital information on the time-varying spectral
changes in nonstationary signals. In the TF signal analysis, a number of IF estimation
methods have been developed [29,33–44]. However, IF is not as useful to characterize
signals composed of spikes, where an infinite amount of frequencies is present [45–47].
Such behavior is present in EEG seizure signals, for which the group delay (GD) has
been proven to be a better alternative to IF [46,47]. However, the limitation of the IF
estimation method proposed in [48], and hence, the approach in [46,47], is that the number
of components is required as input from a user, which limits its usage when no a priori
information is available and when the number of components varies over time.

In this paper, we present a novel method for generating a binary map that automati-
cally identifies distinct regions within the signal’s TFD, where either the IF or GD measure
is particularly suitable for analysis. Our method utilizes information about the local num-
ber of signal components obtained from the localized Rényi entropy (LRE) information,
namely the short-term Rényi entropy (STRE) [33,34] and the narrow-band Rényi entropy
(NBRE) [35,36], to detect components and segment the TFD accordingly. Unlike other
methods that require a priori knowledge of the number of components, our approach is
applicable to signals with unknown and time-varying numbers of components.

The resulting binary map is used in a joint IF and GD estimation method, which was
applied to two commonly used IF estimation algorithms in EEG signal analysis, namely
image-based [22,37,38] and blind-source separation (BSS) [15,39,40]. These methods were
selected for their suitability in an automatic environment, as they effectively use the
component time support information from the STRE. Our approach further incorporates
the frequency support information from the NBRE to estimate the GD and reduce the
dependency of the IF algorithms on the STRE accuracy, which can be achieved for the
considered signal examples.

Furthermore, we demonstrate that the shrinkage operator proposed in [35,36] for sparse
TFD reconstruction can be effectively used for IF and GD estimation, with competitive
performance compare with the image-based and BSS algorithms. We evaluate the per-
formance of our method using mean squared error (MSE) between the local number of
signal components before and after estimation, and we show the superior performance of
our combined IF and GD estimation approach over IF estimation alone on both synthetic
signals with additive noise and real-life EEG seizure signals.

The rest of this paper is organized as follows. Background theory, the proposed
method and the EEG dataset used in this study are described in Section 2. The obtained
results are thoroughly presented and discussed in Section 3. Finally, the paper’s conclusions
are summarized in Section 4.

2. Materials and Methods
2.1. Time–Frequency Signal Analysis

A multicomponent nonstationary signal, denoted as z(t), is defined as the analytic
associate of a real signal s(t) as

z(t) =
NC

∑
i=1

ai(t)ejϕi(t), (1)

where NC is the number of components, while ai(t) and ϕi(t) denote the instantaneous
amplitude and instantaneous phase of the signals i-th component, respectively. The ideal
TFD, ρ̂(t, f ), is a unit delta function following the crests of the ridges which represent the
IF, f0i (t), of the i-th component:

ρ̂(t, f ) =
NC

∑
i=1

a2
i (t)δ( f − f0i (t)), (2)

f0i (t) =
1

2π

d
dt

arg z(t) =
1

2π

dϕi(t)
dt

, (3)
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indicating the dominant frequency of the signal’s i-th component at a given time. A dual
(or inverse) of the IF, namely the GD, τdi

( f ), indicates the dominant time of the signal’s i-th
component at a given frequency:

τdi
( f ) = − 1

2π

d
d f

arg Z( f ), (4)

where Z( f ) is the Fourier transform of z(t). The definitions of IF and GD are closely
related, involving interchanging the time and frequency variables, with an extra minus
sign in Equation (4). In practice, the IF is obtained by determining the signal’s component
ridge across time slices of its TFD, while the GD is determined by determining the signal’s
component ridge across frequency slices of the TFD. In the vast majority of instances, the
ideal TFD is not achievable, because practical TFDs are not precisely localized and may be
affected by cross-terms [22].

The Wigner–Ville Distribution (WVD) is widely used as the most fundamental TFD,
defined as [22]:

W(t, f ) =
∫ ∞

−∞
z
(

t +
τ

2

)
z∗
(

t− τ

2

)
e−j2π f τdτ, (5)

and it provides an estimate of the IF/GD for a signal with a single LFM component
in the TF plane that is almost perfect. Yet, the cross-term vulnerability (when dealing
with multicomponent signals) necessitates proper cross-terms suppression. Using the AF,
A(ν, τ), calculated as

A(ν, τ) =
∫ ∞

−∞

∫ ∞

−∞
Wz(t, f )ej2π( f τ−νt)dtd f , (6)

the highly oscillatory cross-terms can be suppressed with a 2D low-pass filter, defining a
QTFD class of TFDs, ρ(t, f ):

A(ν, τ) = A(ν, τ)g(ν, τ), (7)

ρ(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
A(ν, τ)ej2π(νt− f τ)dνdτ, (8)

where g(ν, τ) is the low-pass filter kernel in the AF. The conventional approaches to kernel
design typically entail a compromise between the concentration of autoterms and the
suppression of cross-terms [22].

2.2. Adaptive Directional TFD

To circumvent the above problem of the conventional TFDs, the adaptive directional
TFD (ADTFD) that adjusts the direction of the smoothing kernel at each TF point in the TF
plane is introduced [7,29], and it is mathematically expressed as follows:

ρ(ad)(t, f ) = ρ(t, f ) ∗
t
∗
f

γθ(t, f ), (9)

where γθ(t, f ) is the smoothing kernel whose direction is controlled by θ, while the double
asterisk denotes double convolution in t and f . In this work, we used the Extended
Modified B Distribution (EMBD) as an underlying QTFD with its kernel:

g(ν, τ) =

∫ ∞
−∞ cosh−2βE(t)ej2πνtdt∫ ∞
−∞ cosh−2βE(t)dt

cosh−2αE(τ), (10)
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where αE = βE = 0.25 are the time and frequency smoothing parameters [7,29,31,32].
As γθ(t, f ), we selected the double-derivative directional Gaussian filter (DGF) as
in [7,29,31,32]:

γθ(t, f ) =
ab
2π

d2

d f 2
θ

e−a2t2
θ−b2 f 2

θ , (11)

where tθ = t cos(θ) + f sin(θ) and fθ = −t sin(θ) + f cos(θ), while parameters a and b
control the extent of smoothing along the time and frequency axes. The DGF has low-pass
characteristics along the time axis (e−a2t2

θ ), while it performs second-order differentiation
along the frequency axis ab

2π (
d2

d f 2
θ

e−b2 f 2
θ ). The direction angle of γθ(t, f ) is adapted locally

for each point in the TF domain by maximizing the correlation between the γθ(t, f ) and TF
ridges as

θ(t, f ) = arg max
θ

∣∣∣∣|ρ(t, f )| ∗
t
∗
f

γθ(t, f )
∣∣∣∣, (12)

where −π/2 ≤ θ ≤ π/2. The implementation of directional smoothing results in the sup-
pression of cross-terms and the enhancement of autoterms. The optimization of smoothing
kernel parameters and shape is necessary for achieving optimal performance, as they are
dependent on the signal being analyzed. Previous studies [7,29,31,32] have indicated that
assigning a small value to parameter a results in intensive smoothing along the major
axis, whereas a larger value for parameter b prevents the merging of close components.
To be more precise, a ∈ [2, 3], while b ∈ [5, 30]. In addition to shape parameters a and
b, the window length, WL, of the γθ(t, f ) affects the performance of the ADTFD. A filter
with a small WL value fails to resolve close components and eliminate cross-terms, but
it preserves the energy of short-duration components. Conversely, a larger WL value
achieves the opposite effect. The computational demand of the exhaustive search involving
all possible combinations of (a, b, WL) is significant. Therefore, we used a method for
the automatic parameter optimization of ADTFD, namely the locally adaptive-ADTFD
(LO-ADTFD) proposed in [31], where the final LO-ADTFD is obtained by choosing TF
points with the minimum value from a given set of ADTFDs {ρ(ad)1

(t, f ), ρ(ad)2
(t, f ), . . . }

and their respective parameters {(a1, b1, WL1), (a2, b2, WL2), . . . }:

ρ(lo)(t, f ) = min
k

(ρ(ad)k
(t, f )), (13)

where ρ(ad)k
(t, f ) is the k-th ADTFD in the defined set. That way, the LO-ADTFD preserves

the energy of short-duration signals while achieving high-resolution TFD with resolved
close components and suppressed cross-terms. In this work, we selected the parameter
(a, b) values from the following set {(3, 6), (3, 8), (2, 20), (2, 30)}, while WL was optimized
for each (a, b) pair using the concentration measure proposed in [41]:

M =
1

NtN f

 Nt

∑
t=1

N f

∑
f=1
|ρ(ad)(t, f )|

1
2

2

, (14)

where Nt and N f denote the numbers of time samples and frequency bins, respectively,
in range [Nt/8 : 4 : Nt/4] for the pairs {(3, 6), (2, 20)} and [Nt/4 : 4 : 3Nt/8] for the pairs
{(3, 8), (2, 30)}, as suggested in [31].

2.3. The Localized Rényi Entropy

The Rényi entropy, denoted by R(ρ(t, f )), is a comprehensive metric for signal com-
plexity in the TF plane [42–44], defined as

R(ρ(t, f )) =
1

1− αR
log2

∫ ∞

−∞

∫ ∞

−∞

(
ρ(t, f )∫ ∞

−∞

∫ ∞
−∞ ρ(t, f ) dtd f

)αR

dtd f , (15)
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where for the odd integer parameter αR > 2 the cross-terms get integrated out from the
QTFD, ρ(t, f ), which is normalized with respect to its total energy [34,42].

To refine the global approach mentioned earlier, the counting attribute of the Rényi
entropy has been utilized to extract the local number of signal components from ρ(t, f )
using STRE [34]. To achieve this, the Rényi entropy of the extracted signal’s TFD is
compared with that of a reference TFD with a known number of component as follows:

NCρ(t, f )
t (t0) = 2R(Γt0{ρ(t, f )})−R(Γt0{ρref(t, f )}), (16)

where t denotes localization using time slices, and t0 is the observed time slice, while ρ(t, f )
and ρref(t, f ) denote the considered and reference TFD, respectively. The time-localization
operator Γt0 sets all TFD samples to zero, except those in the vicinity of t0:

Γt0{ρ(t, f )} =
{

ρ(t, f ), t ∈ [t0 −Θt/2, t0 + Θt/2],
0, otherwise,

(17)

where Θt is the parameter controlling the time-window length. The reference signal is a
cosine signal with an amplitude of 1 and a constant normalized frequency of 0.1, providing
a reference energy of a single component in each time slice [34].

In [35,36], more research reveals the weaknesses of STRE for specific signal types and
introduces NBRE to counteract them. Using NBRE, one may determine the local number
of signal components per frequency slice, f0, by substituting the frequency-localization
operator for the time-localization parameter in Equation (16) with the frequency-localization
operator:

Γ f0{ρ(t, f )} =
{

ρ(t, f ), f ∈ [ f0 −Θ f /2, f0 + Θ f /2],
0, otherwise,

(18)

where Θ f is the frequency window length. The reference signal is a delta function centered
at t = 15 [36]. Note that ρ(t, f ) and ρref(t, f ) have to be obtained with the same TFD with
reduced interference in order for the comparison to be valid.

The comparison between local numbers of components obtained from STRE and NBRE
are shown in Figure 1 for the synthetic signal z4LFM, with Nt = 256 samples composed of
four LFM components with different amplitudes embedded in additive Gaussian noise
(AWGN) with a signal-to-noise ratio (SNR) SNR = 3 dB. Figure 1b,c show the reasoning
behind introducing NBRE in [35,36]—an inaccurate increase in the local number of signal
components, NCt(t), is evident for signals whose components are more aligned with the
frequency axis (i.e., deviate from the method’s reference component), such as the signal
z4LFM, whose LO-ADTFD is shown in Figure 1a. On the other hand, when signals have
components more aligned with the time axis, STRE presents more accurate estimations of
the local number of signal components [35,36].

2.4. Multicomponent Instantaneous Frequency Estimation Algorithms
2.4.1. Image-Based Method

The first method for estimating the IF is an image processing method [37], which is
divided into two sequential steps. In the first step, local peaks of the TFD are detected
using its first and second derivatives as

B(IM)(t, f ) =

{
1, d

d f ρ(t, f ) = 0 and d2

d f 2 ρ(t, f ) < 0,

0, otherwise,
(19)

which generates a binary (t, f ) image consisting of ones on all peak locations and zeros
on all other points. This step usually provides peaks that do not belong exclusively to
the autoterms. Hence, in the second step, the IFs of signal components are extracted
by using the m-connectivity criterion derived from image processing. In this work, we
used m = 10, as in [7,22,37], which defines a 10-neighborhood set for a detected peak
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at location (x, y) as {(x − 1, y), (x − 1, y − 1), (x − 1, y + 1), (x − 1, y + 2), (x − 1, y − 2),
(x + 1, y), (x + 1, y − 1), (x + 1, y + 1), (x + 1, y + 2), (x + 1, y − 2)}. According to this
criterion, the points above and below the IF curves are not included, meaning that there
can be only one frequency at any time instant for any given signal component.

Finally, a threshold must be specified for the minimum time duration of a valid signal
component so that the final TFD contains only components that meet the threshold. In our
example, where no prior knowledge of the input signal is available, the threshold is deter-
mined by the least component time support information provided by the STRE. This method
demonstrated good computing efficiency and performance for real-world signals without
requiring previous knowledge of the components’ IF laws and amplitudes [7,22,37,38].

(a)

(b) (c)

Figure 1. For the considered signal zLFM(t): (a) ρ(lo)(t, f ); (b) the local number of signal components,
NCt(t), (ideal—dashed red line; obtained—solid blue line) obtained from the STRE; and (c) the local
number of signal components, NC f ( f ), (ideal—dashed red line; obtained—solid blue line) obtained
from the NBRE.

2.4.2. Blind-Source Separation Method

The second IF estimation method applied in this study is the blind-source separation
(BSS) method, which is an efficient method for the localization and extraction of components
from multicomponent signals in the TF domain [39]. The term “blind” refers to the provision
of a mixture of statistically independent components without prior knowledge of its
structure or number of components. The STRE’s information on the time supports of
components is included in the version of the approach utilized in this study, namely the
BSS-STRE [40], thus removing the need for several thresholds required by the original
method [39]. The steps of the BSS component extraction method are summarized below.

First, the TFD of a signal is computed, ρ(t, f ), and the corresponding NCt(t) from the
STRE is obtained. The algorithm then locates the largest TFD peak at (t0, f0) and calculates
the adaptive neighboring component frequency band, ∆B = BL + BR, for the time slice
ρ(t0, f0 − BL : f0 + BR). Next, the component is extracted at time-slice t0, and NCt(t0)
is reduced by 1. Following that, the previous steps of the method are repeated in both
directions around t0 as t0 ← t0 − 1 and t0 ← t0 + 1 until the component edges are detected
by the first derivation of |NCt(t)|, |NC′t(t)| 6= 0. If there is at least one component remaining
in ρ(t, f ), the above steps are repeated for the succeeding component. The full pseudocode
of this method may be found in [15,40].

The BSS method results in several TFDs, each containing a single extracted component
from which the component IF is estimated in a separate vector. In order to be comparable
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with the B(IM)(t, f ), all estimated IFs will be displayed within a single binary TFD, denoted
by B(BSS)(t, f ).

Note that the ADTFD, or more precisely, its automatically optimized version LO-
ADTFD, is used as the underlying TFD in both estimation methods for this work, as its
superior performance has been demonstrated in numerous IF estimation applications
studies [38,45,46].

2.4.3. Limitations of the Considered IF Estimation Algorithms Based on STRE

The accuracy of IF estimation methods is highly dependent on the accuracy of STRE.
The findings in [35,36] indicate that STRE is unsuitable for signals whose components
deviate from the time axis, resulting in artificially increased NCt(t) and reduced estimation
accuracy. Since this issue may occur in real-life signals, the question arises as to which IF
estimation approach should be used for such signals. An incorrect NCt(t) in the image-
based IF estimation method can lead to either too low a threshold, resulting in interference
being classified as a true signal component, or too high a threshold, causing some true
signal components to be rejected. In the case of the BSS method, an incorrect NCt(t) can
result in incomplete extraction of signal components, and higher NCt(t) values may cause
the estimation of interference IFs.

In this paper, we aim to demonstrate the negative consequences of using an inap-
propriate localization approach in estimating the IFs of signal components. Specifically,
we show that such an approach can cause estimated IFs to be discontinuous and shifted
away from the true component ridge. Although polynomial functions can approximate
discontinuous estimation samples, the approximation error increases as more estimated
samples do not belong to the autoterms. This phenomenon is particularly problematic for
the image-based method, which requires a larger m-connectivity criterion to connect true
signal components. Otherwise, discontinuous signal components are often classified as
interference and fail to meet the threshold criteria. Increasing the m-connectivity criterion
is not recommended, as it can lead to the linking of interference terms. Our paper aims
to address these limitations by proposing the use of the frequency localization approach
and the estimation of the GD with information from the NBRE method for certain signals.
By doing so, we can minimize the negative effects of an inappropriate localization approach
on IF estimation.

2.5. The Proposed Rényi-Entropy-Based Method for Component Alignment Detection towards
Time or Frequency Axis

In this section, we present a novel method for the automatic detection of TFD regions
that require a time or frequency localization strategy. Such a strategy involves using TFD
analysis with time or frequency slices, linked to an estimate of IFs or GDs. To detect such
regions, we implemented the STRE and NBRE methods, which are sensitive to estimate
errors when dealing with signal components that vary from the methods’ respective
reference components. In this method, this sensitivity is turned into an advantage, as a
considerable increase in the local number of signal components can indicate the need for
an alternate localization strategy in a certain TFD region.

Next, the proposed method validates the detected increase in the local number of
signal components by comparing the quality of IF and GD estimations in the identified
TFD region. We observed that an incorrect localization approach can lead to discontinuous
and inaccurate IF or GD estimations.

To estimate the IF and GD trajectories, we employed an approach based on the
shrinkage operator proposed in [35,36] for sparse TFD reconstruction. The shrinkage
operator, denoted with shrinkt, f , operates independently for each time and frequency
slice and removes samples that do not belong to the autoterms. The autoterms are locally
associated with the NCt(t) or NC f ( f ) largest areas, where an area is calculated as a sum
of samples between the minima to the left and right of the detected local maxima. This
operator involves parameters δt and δ f , which control the number of samples around local
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maxima classified as autoterms [35,36]. Hence, by applying the shrinkage operator on
desired TFD with parameters δt = δ f = 1, we may extract only local maxima belonging to
signal autoterms, which basically represent the IF and GD estimations of signal components:

ρt(t, f ) = shrinkt{ρ(t, f )}
∣∣
δt=1, ρ f (t, f ) = shrink f {ρ(t, f )}

∣∣
δ f =1, (20)

where the t, f notation denotes shrinkage performed over time or frequency slices, while
ρt(t, f ) and ρ f (t, f ) denote the signal’s estimated IFs and GDs (or ridges), respectively.

To demonstrate the proposed method’s steps, we created a synthetic signal, zmix(t),
with Nt = 256 samples, consisting of two constant FM and four non-LFM components
with various different directions and time/frequency supports. Figure 2 illustrates the
LO-ADTFD of the signal, as well as its estimated IFs, ρt

(lo)(t, f ), and GDs, ρ
f
(lo)(t, f ). Ob-

serve that the estimate quality of signal components is distinct between ρt
(lo)(t, f ) and

ρ
f
(lo)(t, f ). Specifically, Figure 2b displays four discontinuous non-LFM components in

ρt
(lo)(t, f ) whose alignment deviates from the time axis. Alternatively, Figure 2c depicts

the same occurrence for ρ
f
(lo)(t, f ) but with inverse results. Now, the identical four non-

LFM components exhibit stronger connectivity than two constant FM components that are
aligned with the time axis.

(a)

(b) (c)

Figure 2. For the considered signal zmix(t): (a) ρ(lo)(t, f ); (b) estimated IFs, ρt
(lo)(t, f ); and (c) esti-

mated GDs, ρ
f
(lo)(t, f ).

To evaluate the quality of estimated IFs and GDs, we propose a metric based on the
number of continuously connected regions of TFD samples denoted by Nr. Specifically, a TFD
sample at location (x, y) is considered to be part of a region if it is connected to at least one
sample in its 8-neighborhood set: {(x− 1, y− 1), (x− 1, y), (x− 1, y+ 1), (x, y− 1), (x, y+ 1),
(x+ 1, y− 1), (x+ 1, y), (x+ 1, y+ 1)}. The resulting components are then counted to obtain
Nr. This way, the proposed metric detects and penalizes discontinuities in the estimated IF
or GD trajectories. Higher values of Nr indicate lower consistency among the estimated
components (i.e., autoterms), reflecting a lower quality of the estimated IF or GD trajectories.
In our proposed method, the result of the Nr metric serves as a decision-making factor in
each TFD region under consideration.

The objective of our proposed method is to generate a binary component alignment
map, denoted by BM(t, f ), that distinguishes TFD regions with components suitable for
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time or frequency localization using ones and zeros, respectively. We provide a comprehen-
sive description of the proposed method’s steps below:

1. The first step in the proposed approach involves calculating the TFD for a given signal
in the time domain, followed by estimation of the IFs and GDs using the shrinkage
operator, resulting in ρt(t, f ) and ρ f (t, f ), as shown in Figure 2.

2. Now, the values of Nr(ρt(t, f )) and Nr(ρ f (t, f )) are computed and compared. If
Nr(ρt(t, f )) ≤ Nr(ρ f (t, f )), the proposed method assumes that signal components are
primarily aligned with the time axis and generates BM(t, f ) using ones. Additionally,
the STRE method is employed to calculate NCt(t), which is used to investigate
local component behavior. Conversely, if Nr(ρt(t, f )) > Nr(ρ f (t, f )), the proposed
method generates BM(t, f ) using zeros and uses the NBRE with NC f ( f ) as the initial
localization approach.

3. The proposed algorithm examines the input NCt(t) or NC f ( f ) for pronounced local
maxima, which may indicate an inadequate local component for the current STRE
or NBRE approach. To identify such maxima, we first locate all local maxima within
NCt(t) (or NC f ( f )), followed by the calculation of the difference in the local number
of signal components, denoted as ∆NC, between the observed maximum and the
minima to the left and right. We consider all ∆NC ≥ 1.50 as “suspicious” intervals that
require further analysis. The chosen threshold value of 1.50 is based on the desire to
detect components that deviate from the respective time or frequency axis more than
the LFM component, with a starting and stopping normalized frequency at 0 and 0.5,
respectively. This component showed marginal accuracy for both approaches, with mean

numbers of local components obtained as 1
Nt

∑Nt
t=1 NCt(t) u 1

N f
∑

N f
f=1 NC f ( f ) u 1.48.

If all ∆NC values are less than 1.50, the algorithm outputs a BM(t, f ) consisting of
only ones or zeros and terminates. Otherwise, the algorithm proceeds to the next step
for further analysis.

4. Next, the algorithm identifies a segment of time (or frequency) slices from NCt(t) (or
NC f ( f )), where the edges are defined by local minima satisfying ∆NC ≥ 1.50. An
example of NC f ( f ) for the signal zmix(t) is shown in Figure 3a, where the first segment
is indicated by red dashed lines at frequency bins f1 and f2. The same segment is then
extracted from a TFD, within which an unsuitable signal component for the current
localization approach may be present. Figure 3b illustrates an example of ρ(lo)(t, f )
with the segment constrained by the previously detected frequency bins f1 and f2,
where a constant FM component needs to be further detected in the subsequent
algorithm steps as unsuitable for the frequency localization approach.

5. At this point, additional localization is performed within the segmented TFD by
computing the LRE in the opposite direction of the previous step. In particular, NC f ( f )
is calculated if Nr(ρt(t, f )) ≤ Nr(ρ f (t, f )), and NCt(t) is calculated if Nr(ρt(t, f )) >
Nr(ρ f (t, f )). We follow the same procedure as in the previous two steps, identifying
all local maxima and minima with ∆NC ≥ 1.50. Then, we detect all segments with
borders satisfying ∆NC ≥ 1.50, which define a 2D TF region or block within ρt(t, f )
and ρt(t, f ) that are evaluated in reference to the Nr value. If Nr is lower for a TFD
block within ρt(t, f ) than in ρ f (t, f ), it implies that a time localization technique is
more suited, and BM(t, f ) in positions specified with a TFD block is set to 1; otherwise,
it is set to 0. All the remaining estimated signal components that are saturated inside
minima with ∆NC < 1.50 belong to the current localization approach (which differs
from the localization approach in the previous step), and the corresponding TFD
block within the final BM(t, f ) changes its values from 1↔ 0. Finally, the Nr value
is compared in ρt(t, f ) and ρ f (t, f ) for time samples or frequency bins where no
component was detected (i.e., NC f ( f ) = 0 or NCt(t) = 0), and the BM(t, f ) is set to
0 or 1 based on the lower Nr value.
Figure 4 illustrates the procedure described in this section. Firstly, an LO-ADTFD
segment bounded in the range [ f1, f2] is extracted and subjected to an opposite LRE
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approach, such as STRE, to obtain the NCt(t), as shown in Figure 4a,b. The red dashed
lines in Figure 4b denote the segment detected using the NCt(t), which defines a TFD
block (t1 : t2, f1 : f2) for evaluation in ρt

(lo)(t, f ) and ρ
f
(lo)(t, f ), shown in Figure 4c,d,

respectively. The estimation of GDs within TFD blocks in red dashed lines exhibits
superior connectivity than IF estimation, leading to the BM(t1 : t2, f1 : f2) to remain
unchanged from the initial values of zero. Since the constant FM component detected
inside the green dashed lines does not produce inaccuracies in the NCt(t), as shown
in Figure 4b, the BM(t3 : t4, f1 : f2) is changed to one.

6. Steps 4 and 5 are repeated for the remaining detected segments in the NCt(t) (or
NC f ( f )) input, i.e., until all ∆NC ≥ 1.50 are examined.

Figure 5 illustrates the BM(t, f ) obtained for the signal zmix(t), demonstrating that
the proposed method effectively labeled both constant FM components for the time
localization approach.

(a) (b)

Figure 3. For the considered signal zmix(t): (a) the local number of signal components, NC f ( f ),
obtained from the NBRE method; (b) LO-ADTFD. Red dashed lines mark the first segment [ f1, f2]

chosen from NC f ( f ) in which a significant increase in NC f ( f ) is detected.

(a) (b)

(c) (d)

Figure 4. For the considered signal zmix(t): (a) segmented LO-ADTFD; (b) the local number of
signal components NCt(t) calculated on segmented LO-ADTFD; and (c) ρt

(lo)(t, f ); (d) ρ
f
(lo)(t, f ). Red

dashed lines mark detected segments that are evaluated with Nr measure in ρt
(lo)(t, f ) and ρ

f
(lo)(t, f ).

Green dashed lines mark a segment that is considered to have components suitable for the current
time localization approach.
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(a) (b)

Figure 5. For the considered signal zmix(t): (a) BM(t, f ); (b) BM(t, f ) with LO-ADTFD. Yellow and
dashed red rectangles point to the TF regions suitable for analysis using time slices, while the rest of
the TFD in blue should be analyzed using frequency slices.

2.6. Component Extraction Using the Component Alignment Map

The BM(t, f ) map obtained provides the means to extract signal components in the
TFD. Extraction of these components is not achieved individually but through two sets
of components: one suitable for localization through time slices and the other suitable for
localization through frequency bins. The extraction process is simplified by multiplying
the BM(t, f ) map with the TFD using the operator κ{·}, which we defined in two ways. To
derive the signal components corresponding to the localized approach through time slices,
the operator κt{·} is used:

κt{ρ(t, f )} =
{

ρ(t, f ), BM(t, f ) = 1,
0, BM(t, f ) = 0,

(21)

where, by multiplying the BM(t, f ) map with TFD, only the regions defined by the units
in BM(t, f ) are retained in TFD. Likewise, the operator κ f {·} is employed to obtain the
components corresponding to the localized approach through frequency bins:

κ f {ρ(t, f )} =
{

ρ(t, f ), BM(t, f ) = 0,
0, BM(t, f ) = 1,

(22)

by means of which only the TFD regions that are defined by zeros in BM(t, f ) are kept
in TFD.

Consequently, when max{BM(t, f )} = 1 and min{BM(t, f )} = 0, the input TFD can
be split into two TFDs, κt{ρ(t, f )} and κ f {ρ(t, f )}, enabling the local number of signal
components to be computed using the STRE and NBRE methods, respectively. Since both
κt{ρ(t, f )} and κ f {ρ(t, f )} are expected to contain components corresponding to the chosen
localization approach, more precise estimates of the local number of signal components
can be obtained compared with those obtained from the original TFD.

Figure 6 illustrates the results of applying the operators κt and κ f to the signal zmix(t).
The obtained κt{ρ(lo)(t, f )} and κ f {ρ(lo)(t, f )}, shown in Figure 6a,b, respectively, contain
components suitable for the chosen localization approach. This is further corroborated
by the NCt(t) and NC f ( f ) estimates in κt{ρ(lo)(t, f )} and κ f {ρ(lo)(t, f )}, respectively,
which lack significant inaccurate local maxima. Notably, the NCt(t) and NC f ( f ) estimates
obtained from the split TFDs are considerably more precise than those obtained from the
original TFD, as demonstrated in Figure 6c,d. However, it is important to emphasize that
the estimates of the local number of signal components should be interpreted in conjunction
with BM(t, f ), since they do not represent estimates of the entire TFD but rather of the TFD
regions specified within BM(t, f ).
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(a) (b)

(c) (d)

Figure 6. For the considered signal zmix(t): (a) κt{ρ(lo)(t, f )}; (b) κ f {ρ(lo)(t, f )}; (c) the local number
of signal components obtained by the STRE in starting TFD (red dashed line) and κt{ρ(lo)(t, f )} (blue
solid line); and (d) the local number of signal components obtained by the NBRE in starting TFD (red
dashed line) and κ f {ρ(lo)(t, f )} (blue solid line).

2.7. Method for an Automatic Estimation of IF and GD

Upon completion of the necessary prerequisites, we propose a new method that can
automatically estimate both the IF and GD of signal components in a TFD. This method
leverages the use of the binary map BM(t, f ) to identify the TFD regions that require IF or
GD estimation. Meanwhile, the behavior of the signal components, or autoterms, is defined
by the local number of signal components obtained through the STRE and NBRE methods
applied on TFDs with extracted components, κt{ρ(t, f )} and κ f {ρ(t, f )}, respectively.

The proposed method is composed of the following steps:

1. First, the input signal’s TFD is processed using the κt, f {·} operator to obtain two TFDs:
one TFD, κt{ρ(t, f )}, containing signal components suitable for IF estimation using
a time-slice approach, and another TFD, κ f {ρ(t, f )}, containing signal components
suitable for GD estimation using a frequency-slice approach.

2. Next, the IFs are estimated from κt{ρ(t, f )} using any IF estimation algorithm, the
result of which is denoted as Bt(t, f ).

3. A matrix transpose is applied to the discrete version of κ f {ρ(t, f )}, which interchanges
the time and frequency axes and enables GD estimation in frequency slices using the
same IF estimation algorithm approach, resulting in B f (t, f ).

4. Finally, the IF and GD estimations are combined within a resulting binary TFD, B(t, f ),
which is an output of the proposed method summing Bt(t, f ) and B f (t, f ).

The proposed method’s steps are visualized in Figure 7. We implemented the above-
proposed method in the considered IF estimation methods, which may be now considered
as IF/GD estimation algorithms utilizing both LRE methods, namely the image-based
STRE-NBRE and BSS-STRE-NBRE.
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ρ(t, f )

κt{ρ(t, f )}

TFD transpose
of κ f {ρ(t, f )}

Apply IF estima-
tion algorithm:

Bt(t, f ) (IFs)

Apply IF estima-
tion algorithm:
B f (t, f ) (GDs)

B(t, f ) = Bt(t, f ) + B f (t, f )

Figure 7. Simplified flowchart for the automatic IF and GD estimation for a given TFD.

It is worth noting that the combined estimates of the IF and GD may be extracted
from the estimates generated by the operator shrinkt, f {·}, previously used in the proposed
method for BM(t, f ) as

B(shrink)(t, f ) = κt{ρt(t, f )}+ κ f {ρ f (t, f )}. (23)

In the following section, the performance of the B(shrink)(t, f ) estimation is compared
with that of the image-based and BSS methods.

2.8. EEG Dataset Description

Seizure signals in EEG recordings are often modeled as multicomponent piecewise
FM signals:

s(t) =
NC

∑
i=1

ai(t)e
j2π

∫
f0i (τ)dτ . (24)

However , this model does not take into consideration the spikes or short-duration tran-
sients that are regularly seen in EEG readings. In order to account for these spikes, the
updated signal model that we use in this study is mathematically given as follows [7,30]:

s(t) =
NC

∑
i=1

ai(t)e
j2π

∫
f0i (τ)dτ +

NC

∑
i=1

δ(t− Ti), (25)

where Ti is a time-varying shift.
Analyzing signals that contain both rhythmic and spike features using traditional

TF techniques is challenging, as they have energy distributed along both the time and
frequency axes. Smoothing along the frequency axis can eliminate cross-terms created by
spikes, but it also reduces the resolution of the sinusoidal signal components. In addition,
such signals require the use of a combined IF and GD estimation method, as estimating
only the IFs fails to recover spike features [47,48].

We used a database of 200 EEG seizure segments, which were previously uploaded
as supplementary material in [38] and have been used in [7,30,32,47], from which an
illustrative example was chosen, as used in additional studies [22,31]. The data and relevant
code are publicly available at https://github.com/nabeelalikhan1/EEG-Classification-IF-
and-GD-features (accessed on 1 October 2022). The EEG recordings were obtained from
newborns at the NICU of the Royal Brisbane and Women’s Hospital, Brisbane, Australia,
using the MEDELEC Profile System. Twelve electrodes were placed according to the
international 10–20 standard, which were used to construct a 20-channel bipolar montage.
The recordings underwent prefiltering using an analog bandpass filter with a bandwidth
of 0.5 to 70 Hz. The signal was then sampled to 256 Hz before being digitally resampled to
32 Hz, as the majority of the signal energy is typically found below 12 Hz. The resulting
signal segment is 8 s in duration and acquired at a sampling rate of 32 Hz, resulting in a
total of Nt = 256 samples [7,30,32,38,47]. Previous studies have shown that a differentiator

https://github.com/nabeelalikhan1/EEG-Classification-IF-and-GD-features
https://github.com/nabeelalikhan1/EEG-Classification-IF-and-GD-features
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filter can be used to whiten the EEG background and enhance the signature of spikes in
EEG signals [30,47,49,50]. Hence, the proposed IF/GD estimation method’s performance
was tested on EEG seizure signal without, denoted as zEEG(t), and with a differentiatior
filter, denoted as zEEGfilt(t).

3. Results and Discussion

We compared the performance of the combined IF and GD estimation approach with
that of the IF estimation approach alone for both synthetic signals, zLFM(t) and zmix(t),
and real-life EEG seizure signals, zEEG(t) and zEEGfilt(t). It is important to note that for IF
estimation only, algorithms use the STRE method applied to an input LO-ADTFD. However,
for IF and GD estimation, the algorithms utilize the proposed method with BM(t, f ), along
with the STRE and NBRE methods applied to the extracted components from an input
LO-ADTFD using the proposed operators κt and κ f . We calculated the STRE and NBRE
using the parameter αR = 3, with Θt = Θ f = 11 for the synthetic signals zLFM(t) and
zmix(t) and Θt = Θ f = 5 for the signals zEEG(t) and zEEGfilt(t), in order to capture spike
features more precisely, which have been shown to be stable in [33,35,36,51].

To supplement the visual inspection of the results, it is important to quantify the
impact of missing estimated IFs and GDs on the connectivity of components in the signal.
Since the loss of components can occur at any point in the TFD, it is necessary to use a
performance indicator that can monitor local components. To achieve this, we utilized an
LRE-based indicator that has been shown to be effective in detecting reconstructed TFDs
with discontinuous autoterms in prior work [36]. Specifically, we employed two perfor-
mance indicators that measure the error between the local number of signal components
in the original LO-ADTFD with fully preserved auto terms (ρ(lo)(t, f )) and the TFD with
estimated IFs/GDs (B(t, f )), using mean squared error (MSE) given as

MSEt =
1

Nt

Nt

∑
t=1

 NC
ρ(lo)(t, f )
t (t)− NCB(t, f )

t (t)

max
(

NC
ρ(lo)(t, f )
t (t), NCB(t, f )

t (t)
)


2

, (26)

MSE f =
1

N f

N f

∑
f=1

 NC
ρ(lo)(t, f )
f ( f )− NCB(t, f )

f ( f )

max
(

NC
ρ(lo)(t, f )
f ( f ), NCB(t, f )

f ( f )
)


2

, (27)

MSEt, f =
MSEt + MSE f

2
, (28)

and mean absolute error (MAE) given as

MAEt =
1

Nt

Nt

∑
t=1

∣∣∣∣∣ NC
ρ(lo)(t, f )
t (t)− NCB(t, f )

t (t)

max
(

NC
ρ(lo)(t, f )
t (t), NCB(t, f )

t (t)
)∣∣∣∣∣, (29)

MAE f =
1

N f

N f

∑
f=1

∣∣∣∣∣ NC
ρ(lo)(t, f )
f ( f )− NCB(t, f )

f ( f )

max
(

NC
ρ(lo)(t, f )
f ( f ), NCB(t, f )

f ( f )
)∣∣∣∣∣, (30)

MAEt, f =
MAEt + MAE f

2
. (31)

Higher values of MSEt, f and MAEt, f indicate a greater amount of missing estimated
IFs and/or GDs in B(t, f ), suggesting that an inappropriate estimation strategy has been em-
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ployed. Normalizing the local component count enabled a fair MSE and MAE comparison
across signals.

3.1. Results for Synthetic Signals

The efficacy of the proposed BM(t, f ) was evaluated on the synthetic signal example
zLFM(t), with the results presented in Figure 8. Since all four LFM components of the signal
zLFM(t) deviate from the time axis, the estimated GDs, shown in Figure 8b, offer a better
connection than the estimated IFs, shown in Figure 8a. Consequently, the proposed method
generates the BM(t, f ) map, correctly highlighting the TFD regions along the signal’s
components for the frequency localization approach, as shown in Figure 8c,d.

(a) (b)

(c) (d)

Figure 8. For the considered signal zLFM(t): (a) estimated IFs, ρt
(lo)(t, f ); (b) estimated GDs, ρ

f
(lo)(t, f );

(c) BM(t, f ); and (d) BM(t, f ) with LO-ADTFD. Yellow and dashed red rectangles point to the TF
regions suitable for analysis using time slices, while the rest of the TFD in blue should be analyzed
using frequency slices.

In the case of the signal zLFM(t), Figure 9a demonstrates that the image-based STRE
method was incapable of linking TF peaks that deviate from the time axis, resulting in
the rejection of all four LFM autoterms and the estimation of interference terms that were
almost parallel to the time axis. However, when utilizing the proposed combined IF and
GD estimation, the autoterms were fully estimated with high connectivity (as shown in
Figure 9b). Nevertheless, some interference and noise terms were also estimated due to
the obtained spike in NC f ( f ) estimation shown in Figure 1c, which provided a frequency
support threshold that is too small. While the BSS-STRE method did not experience
difficulties with missing components, the estimated IFs were highly discontinuous, and
not all of them belonged to the autoterms, as shown in Figure 9c. Conversely, Figure 9d
demonstrates that the combined IF and GD estimation resulted in significantly improved
component connectivity, with nearly all samples belonging to the autoterms.
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(a) (b)

(c) (d)

Figure 9. Estimated IFs and GDs for the signal zLFM(t) in AWGN with SNR = 3 dB using (a) the
image-based STRE method; (b) the image-based STRE-NBRE method; (c) the BSS-STRE method; and
(d) the BSS-STRE-NBRE method.

Similar results were obtained for the signal zmix(t). The image-based STRE method
was unable to connect non-LFM components (or parts of components) that deviated from
the time axis, as illustrated in Figure 10a. Meanwhile, the BSS-STRE method produced
IF estimates that were discontinuous and dislocated from the true component ridge, as
seen in Figure 10c. However, the proposed combined IF and GD estimation significantly
improved the performance of both methods, as shown in Figure 10b,d. The performance
of the B(shrink)(t, f ) obtained by the shrinkage operator is depicted in Figure 11. For both
signal examples, the estimated component ridges in the TFD showed superior performance
compared with those obtained using the image-based method, while being very similar
to the BSS method, demonstrating high component connectivity and belonging to the
autoterms of the signal.

The results presented in Table 1 demonstrate a significant reduction in MSEt, f and
MAEt, f when using the proposed method for combined IF and GD estimation with STRE
and NBRE information. For the signals zLFM(t) and zmix(t), the image-based method’s
estimation improved by 71.25% and 81.11% in terms of MSEt, f and 50.09% and 62.70% in
terms of MAEt, f , respectively. The BSS method’s estimation also improved by 92.95% and
83.17% in terms of MSEt, f and 82.37% and 65.07% in terms of MAEt, f , respectively.

Moreover, the results demonstrate that the B(shrink)(t, f ) obtained using the shrinkage-
operator-based method for IF and GD estimation outperformed the image-based STRE and
BSS-STRE methods—MSEt, f and MAEt, f values improved by up to 95.62% and 86.52%,
respectively, for the signal zLFM(t) and 90.01% and 72.79%, respectively, for the signal
zmix(t). Moreover, the results show that the obtained B(shrink)(t, f ) is competitive with
the B(BSS)(t, f ) obtained using the BSS-STRE-NBRE algorithm, showing a reduction in
MSEt, f for zLFM(t) by 3.20%, while the rest of the indicators are slightly in favor of the
BSS-STRE-NBRE method (by up to 2.01%).
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(a) (b)

(c) (d)

Figure 10. Estimated IFs and GDs for the signal zmix(t) using (a) the image-based STRE method;
(b) the image-based STRE-NBRE method; (c) the BSS-STRE method; and (d) the BSS-STRE-NBRE
method.

(a) (b)

Figure 11. Estimated IFs and GDs obtained in B(shrink)(t, f ) using the shrinkage operator for the
signals: (a) zLFM(t); (b) zmix(t).

Table 1. Performance comparison between the combined IF and GD estimation versus the IF esti-
mation for the synthetic signals: zLFM(t) in AWGN with SNR = 3 dB and zmix(t). Values in bold
indicate the best-performing algorithm.

Algorithm Image-Based Image-Based BSS BSS Shrinkage
Operator

Support
Information STRE STRE and

NBRE STRE STRE and
NBRE

STRE and
NBRE

Estimation IF IF and GD IF IF and GD IF and GD

Signal zLFM(t) in AWGN with SNR = 3 dB

MSEt, f 0.2487 0.0715 0.1517 0.0107 0.0109
MAEt, f 0.4059 0.2026 0.3041 0.0536 0.0547
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Table 1. Cont.

Algorithm Image-Based Image-Based BSS BSS Shrinkage
Operator

Support
Information STRE STRE and

NBRE STRE STRE and
NBRE

STRE and
NBRE

Signal zmix(t)

MSEt, f 0.2123 0.0401 0.1301 0.0219 0.0212
MAEt, f 0.3925 0.1464 0.3046 0.1064 0.1068

Sensitivity to Noise

In this study, the proposed shrinkage-operator-based, BSS-STRE-NBRE and image-
based STRE-NBRE methods for estimating IF and GD were evaluated for their robustness to
noise. Synthetic signals, including zLFM(t) and zmix(t), were embedded in AWGN with an
SNR that varied between 0 and 10 dB in 1000 independent simulations. The F1 score metric,
which combines precision and recall, was used to evaluate the algorithm’s performance,
given as

Precision =
TP

TP + FP
, (32)

Recall =
TP

TP + FN
, (33)

F1 = 2 · Precision · Recall
Precision + Recall

, (34)

where true positives (TP) and true negatives (TN) indicate the number of samples that were
correctly estimated as a signal or noise/interference component, respectively, while false
positives (FP) and false negatives (FN) refer to the number of noise/interference or signal
samples that were incorrectly identified as signal or noise, respectively. Note that F1 values
range from 0 to 1, with higher values indicating better performance.

To further validate the F1 score metric, the 2D MSE between the noise-free and noisy
TFDs was calculated using the scaled and squared Frobenius norm as follows:

F-norm =
1

NtN f
||B(t, f )− B(noise)(t, f )||2F =

1
NtN f

Nt

∑
t=1

N f

∑
f=1
|B(t, f )− B(noise)(t, f )|2. (35)

The F-norm value was defined as the squared norm of the difference between the two
TFDs, divided by the total number of time–frequency bins, Nt × N f . A lower F-norm value
indicates better performance.

We evaluated the accuracy of the local number of signal component estimates by
computing the MSE between NCt(t) and NC f ( f ) for both noise-free and noisy signals
using Equation (3). The results, depicted in Figure 12, show that the LRE methods produce
stable estimates for SNR values above 1 dB. Moreover, the noise sensitivity of all IF/GD
estimation algorithms considered is determined by the sensitivity of LRE methods, as
indicated by the F1 and F-norm values shown in Figures 13 and 14. Notably, the image-
based STRE-NBRE method is more sensitive to noise than the shrinkage-operator-based
and BSS-STRE-NBRE methods, as even minor inaccuracies in the estimated local number
of signal components can result in poor threshold values, as seen in Figure 9b.
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(a) (b)

Figure 12. MSE between the local number of signal components estimated from noise-free and noisy
LO-ADTFDs in AWGN with SNR = [0, 10] dB for the considered signals: (a) zLFM(t); (b) zmix(t).

(a) (b)

Figure 13. F1 values for evaluating the shrinkage-operator-based (blue line), BSS-STRE-NBRE (red
line) and image-based STRE-NBRE (green line) IF/GD estimation algorithms’ sensitivity to AWGN
in SNR = [0, 10] dB for the considered signals: (a) zLFM(t); (b) zmix(t).

(a) (b)

Figure 14. F-norm values for evaluating the shrinkage-operator-based (blue line), BSS-STRE-NBRE
(red line) and image-based STRE-NBRE methods’ (green line) IF/GD estimation algorithms’ sensitiv-
ity to AWGN in SNR = [0, 10] dB for the considered signals: (a) zLFM(t); (b) zmix(t).

3.2. Results for Real-Life EEG Seizure Signals

Figure 15a presents the time-domain representation of the signal zEEG(t), revealing
several spikes. These spikes are effectively captured in the TF domain using LO-ADTFD,
as demonstrated in Figure 15b,c for the original and filtered signals, zEEG(t) and zEEGfilt(t),
respectively, which also reveal an additional single sinusoidal component. Notably, the
differentiator filter significantly reduced the background noise and enhanced the desired
spike components, leading to a cleaner signal, zEEGfilt(t).



Sensors 2023, 23, 4680 20 of 29

(a)

(b) (c)

Figure 15. (a) EEG seizure signal considered in this study, zEEG(t), represented in time domain;
(b) LO-ADTFD of the signal zEEG(t); and (c) LO-ADTFD of the signal zEEGfilt (t).

Figure 16 demonstrates that the proposed BM(t, f ) effectively identified and separated
the spike and sinusoidal components in both signals, zEEG(t) and zEEGfilt(t). As a result,
Figure 17 displays the extracted sinusoidal and spike components in separate TFDs. The
local number of components, NCt(t) and NC f ( f ), estimated from these TFDs, shows a
significant reduction in inaccurate local maxima compared with those obtained from the
input LO-ADTFD, as illustrated in Figure 18.

(a) (b)

(c) (d)

Figure 16. (a) BM(t, f ) for the signal zEEG(t); (b) BM(t, f ) with LO-ADTFD for the signal zEEG(t);
(c) BM(t, f ) for the signal zEEGfilt (t); and (d) BM(t, f ) with LO-ADTFD for the signal zEEGfilt (t).
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(a) (b)

(c) (d)

Figure 17. Extracted components with (a) κt{ρ(lo)(t, f )} for the signal zEEG(t); (b) κ f {ρ(lo)(t, f )}
for the signal zEEG(t); (c) κt{ρ(lo)(t, f )} for the signal zEEGfilt (t); and (d) κ f {ρ(lo)(t, f )} for the
signal zEEGfilt (t).

(a) (b)

(c) (d)

Figure 18. Comparison between the local number of signal components obtained by STRE and NBRE
in starting TFD (dashed red line) and from extracted components using the proposed operators κt

and κ f (solid blue line) for the signals: (a,b) zEEG(t); (c,d) zEEGfilt (t).
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Figure 19 displays the estimated IFs and GDs of the existing approach in [47] for the
signals zEEG(t) and zEEGfilt(t). The IFs are estimated from the signal in the time domain,
while the GDs are obtained from the Fourier transform of a signal using the duality
property, which transposes a signal in the TF domain [47]. The results indicate that the
approach is effective in estimating the IFs and GDs for the filtered EEG signal zEEGfilt(t)
used in the original study [47]. However, the approach proved unsuitable for estimating
the GDs of the unfiltered signal zEEG(t) due to the presence of background noise and
the inconsistent number of components over the TF domain, leading to inaccurate GD
estimates, as illustrated in Figure 19d. Furthermore, it is worth noting that the user needs
to provide the global number of components to obtain these estimates, which may present
a practical limitation when acquiring an unknown signal.

Figures 20 and 21 compare the performance of the IF estimation methods against the
proposed mutual IFs and GDs estimations. As the spike and sinusoidal components are
perpendicular to each other, their estimated IFs exhibit completely opposite performances.
Specifically, all IF estimation methods successfully estimated the IFs of the sinusoidal
component, while the IF estimates of the spike components were highly discontinuous
and, especially for the unfiltered signal zEEG(t), indistinguishable from the background
samples. However, estimating the GDs for the spike components significantly improved
their connectivity and overall preservation, as shown in Figures 20 and 21, using all
considered IF and GD estimation methods.

(a) (b)

(c) (d)

Figure 19. Using the method proposed in [47]: (a) estimated IFs of the signal zEEGfilt (t); (b) estimated
GDs of the signal zEEGfilt (t); (c) estimated IFs of the signal zEEG(t); and (d) estimated GDs of the
signal zEEG(t).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 20. Estimated IFs and GDs using (a) the image-based STRE method for the signal zEEG(t); (b) the
image-based STRE-NBRE method for the signal zEEG(t); (c) the BSS-STRE method for the signal
zEEG(t); (d) the BSS-STRE-NBRE method for the signal zEEG(t); (e) the image-based STRE method
for the signal zEEGfilt (t); (f) the image-based STRE-NBRE method for the signal zEEGfilt (t); (g) the BSS-
STRE method for the signal zEEGfilt (t); and (h) the BSS-STRE-NBRE method for the signal zEEGfilt (t).
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(a) (b)

Figure 21. Estimated IFs and GDs obtained in B(shrink)(t, f ) using the shrinkage operator for the
signals: (a) zEEG(t); (b) zEEGfilt (t).

The numerical results of the mutual IF and GD estimations, presented on illustrative
zEEG(t) and averaged on a dataset containing 200 examples, are summarized in Table 2.
The results confirm that the combined IF and GD estimation approach outperforms the IF
estimation alone. Specifically, for the EEG dataset of unfiltered zEEG(t) signals, the image-
based STRE-NBRE and BSS-STRE-NBRE algorithms improved the MSEt, f and MAEt, f
indicators by up to 42.23% and 30.08%, respectively, compared with the image-based STRE
and BSS-STRE algorithms. Improvements were obtained for the dataset of filtered EEG
signals zEEGfilt(t) also, where the MSEt, f and MAEt, f indicators were reduced by up to
34.96% and 33.41%, respectively, considering the same algorithms, namely the image-
based STRE-NBRE and BSS-STRE-NBRE. Furthermore, the obtained results show the
superiority of the shrinkage operator to the image-based STRE and BSS-STRE algorithms,
with improvements of up to 46.45% and 36.61% for the dataset of zEEG(t) signals and up
to 31.71% and 30.35% for the dataset of zEEGfilt(t) signals in terms of MSEt, f and MAEt, f ,
respectively. Again, the shrinkage operator approach was shown to be competitive with
the BSS-STRE-NBRE algorithm.

Table 2. Performance comparison between the combined IF and GD estimation versus the IF esti-
mation for EEG seizure signals zEEG(t) and zEEGfilt (t). Values in bold indicate the best-performing
algorithm.

Algorithm Image-Based Image-Based BSS BSS Shrinkage
Operator

Support
Information STRE STRE and

NBRE STRE STRE and
NBRE

STRE and
NBRE

Estimation IF IF and GD IF IF and GD IF and GD

Illustrative example of zEEG(t)

MSEt, f 0.0488 0.0265 0.0399 0.0215 0.0196
MAEt, f 0.1505 0.1081 0.1194 0.0955 0.0894

Illustrative example of zEEGfilt (t)

MSEt, f 0.0642 0.0516 0.0738 0.0481 0.0487
MAEt, f 0.2897 0.2012 0.3033 0.1972 0.1987

Dataset containing 200 examples of zEEG(t)

MSEt, f 0.0521 0.0301 0.0481 0.0288 0.0279
MAEt, f 0.1732 0.1211 0.1411 0.1122 0.1098

Dataset containing 200 examples of zEEGfilt (t)

MSEt, f 0.0728 0.0588 0.0801 0.0521 0.0547
MAEt, f 0.3120 0.2312 0.3325 0.2214 0.2316
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3.3. Interpretation of Obtained Results

The experimental results show that the proposed method, which generates a binary
map BM(t, f ), successfully identifies regions in the TFD that contain signal components
requiring different time or frequency localization approaches for all considered synthetic
and real-life EEG signals. Furthermore, it is shown that estimating the local number of
signal components on extracted TFDs significantly reduces local estimation inaccuracies
compared with the original estimate on the TFD with all components present.

The results obtained when comparing mutual IF and GD estimation with IF estimation
alone show a significant improvement in estimated component connectivity and preserva-
tion for all considered synthetic and real-life EEG signals. The image-based STRE-NBRE
and BSS-STRE-NBRE methods effectively used frequency support information from NBRE,
providing IF and GD estimates without requiring prior knowledge about the signal. The
results also show that IF and GD estimates can be obtained using the shrinkage operator
derived from sparse reconstruction, which has competitive performance compared with
the BSS algorithm, while both outperforming the image-based algorithm. Additionally,
the considered algorithms’ robustness to noise was connected with the STRE and NBRE
methods, where the BSS-STRE-NBRE and shrinkage-operator-based estimations outper-
formed the image-based STRE-NBRE algorithm for all considered SNRs. The image-based
algorithm’s dependence on LRE accuracy is the reason behind this, where even the smallest
error can cause a threshold that is too small or too large for the method.

The advantage of the BSS algorithm over the shrinkage operator is that it extracts
components one by one using the double-directional approach. This implies that the
estimated samples follow a line, which is evident when comparing Figures 9d and 11a.
However, this can be a disadvantage if interference is falsely chosen as a component due
to its higher maxima than the autoterm’s, as the BSS algorithm will force the estimation
of an interference. In this case, tracking the largest local surfaces instead of only local
maxima in the shrinkage operator can avoid some interference samples, as shown in
Figures 20d and 21a.

The results show that the proposed method is feasible to be used for estimating IFs
and GDs of EEG seizure signals, zEEG(t) and zEEGfilt(t). In the case of the filtered signal
zEEGfilt(t), the estimated IFs and GDs using the proposed method are competitive with the
approach in [47], with the significant advantage that the proposed method does not require
the number of components to be set in advance. However, for the unfiltered signal zEEG(t),
the proposed method outperforms the approach in [47] and shows feasibility for signals
whose number of components changes over time.

It should be noted that when extracting intersecting components that require different
localization approaches, a small portion of components near the intersection point may be
extracted in a different TFD. This phenomenon is evident in Figure 17a,b for the unfiltered
EEG signal zEEG(t), where we observe that small parts of spike components have been
extracted alongside the sinusoidal component. This behavior can be attributed to the
practical calculation of STRE and NBRE, where the sliding window with size Θt or Θ f
within the stable range defined in [33,51] detects a component’s time or frequency support
as a few samples or bins more than the ideal. Consequently, the TFD region borders in
the proposed BM(t, f ) are slightly wider than the actual component’s time or frequency
support to accommodate for this behavior.

4. Conclusions

The analysis of signals that exhibit both rhythmic and spike features, such as EEG
seizure signals, presents a significant challenge when utilizing conventional TF methods.
In order to extract valuable components that are distributed across both the time and
frequency axes, a comprehensive method is necessary. In this paper, we introduced a novel
method for automatically estimating the IF and GD of a signal in the TF domain. In order
to define TFD regions requiring a different time or frequency localization strategy, we
proposed a method for generating a binary map BM(t, f ) based on the information from
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LRE methods. An increase in the local number of signal components obtained using the
LRE methods was indicative of the presence of a component that may require a different
localization approach than what was observed, whereas measuring IF and GD estimates
with the proposed measure Nr was effective for identifying discontinuous estimates.

Through the implementation of the suggested BM(t, f ), we successfully extracted com-
ponents that necessitate either a time or frequency localization approach, thereby yielding
more accurate evaluations of the numbers of local components using the STRE and NBRE
methods. The STRE method’s reduced accuracy for certain signals prompted modifications
to image-based and BSS IF estimation algorithms, enabling them to efficiently incorporate
the NBRE method and decrease their dependence on the STRE method. The proposed
method yielded a notable enhancement in performance and facilitated the simultaneous
estimation of IF and GD.

The results obtained demonstrate that the proposed method’s combined IF and GD
estimation outperforms the IF estimation alone. This was demonstrated through the
analysis of noisy synthetic and real-life EEG seizure signals with characteristic rhythmic
and spike features. In contrast to current methodologies, the proposed approach does not
necessitate an a priori understanding of an input signal and is applicable to signals whose
number of components varies with time or frequency.

The following research efforts will focus on the advancement of characteristics that
can distinguish and categorize EEG signals from the surrounding environment, utilizing
the IF and GD evaluations derived from this study. Furthermore, a research area of interest
involves the creation of a concentration measure for TFDs utilizing the estimated IFs and
GDs. The primary objective of this measure will be to impose a penalty for the lack of
autoterms that occurs in signal processing using advanced TF techniques.
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Abbreviations
The following abbreviations are used in this manuscript:

ADTFD Adaptive directional time–frequency distribution
AF Ambiguity function
AWGN Additive white Gaussian noise
BSS Blind-source separation
DGF Derivative directional Gaussian filter
EEG Electroencephalogram
EMBD Extended modified B distribution
GD Group delay
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IF Instantaneous frequency
LFM Linear frequency-modulated
LO-ADTFD Locally optimized adaptive directional time–frequency distribution
LRE Local Rényi entropy
MAE Mean absolute error
MSE Mean squared error
NBRE Narrow-band Rényi entropy
SNR Signal-to-noise ratio
STRE Short-term Rényi entropy
TF Time–frequency
TFD Time–frequency distribution
WVD Wigner–Ville distribution
QTFD Quadratic time–frequency distribution
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