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I 

 

SUMMARY  

 

This bachelor's thesis reviews the literature on the application of diverse machine 

learning (ML) methods in the maritime industry, specifically focusing on automatic 

identification system (AIS) data. The review explores a wide range of ML techniques, such 

as neural networks, reinforcement learning, classification, regression, and clustering, and 

their utilization to enhance maritime operations, efficiency, and safety. Demonstrating 

positive results, various studies highlight the effectiveness of these methods as well as 

several shortcomings that are sought to be corrected in further research. Furthermore, the 

thesis identifies potential future applications of ML in fleet management, vessel 

maintenance, and navigational safety analysis. In summary, the thesis presents practical 

insights through the application of selected ML methods to real AIS data, yielding 

meaningful results for the maritime industry. 

 

Keywords: AIS data, machine learning methods, maritime industry 

 

SAŽETAK 

 

Ovaj završni rad pruža pregled literature o primjeni različitih metoda strojnog učenja 

u pomorstvu, fokusirajući se na podatke automatskog identifikacijskog sustava (AIS). 

Prikazane su različite primjene metoda strojnog učenja u područjima poput pomorske 

sigurnosti, praćenja brodova, optimizacije rute, detekcije anomalija i predikcije ponašanja 

brodova. Demonstrirajući pozitivne rezultate, različita istraživanja ističu učinkovitost tih 

metoda kao i nekolicinu nedostataka koji se nastoje ispraviti u daljnjim istraživanjima. 

Nadalje, rad identificira potencijalne buduće primjene metoda strojnog učenja u upravljanju 

flotom, održavanju brodova i analizi navigacijske sigurnosti. Ukratko, rad pruža praktične 

uvide kroz primjenu odabranih metoda na stvarnim AIS podacima, donoseći značajne 

rezultate za pomorsku industriju. 

 

Ključne riječi: AIS podaci, metode strojnog učenja, pomorstvo 
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1. INTRODUCTION 

 

 The history of human civilization abounds with examples of technological progress 

that has influenced all spheres of life. Technology is developing expeditiously, and people 

sometimes fail to keep up with that pace. From the invention of tools and the wheel to 

modern technologies, humanity is perpetually putting in the effort to improve its living 

conditions and adapt more successfully to the environment. Since all development and 

progress, including technological ones, bring its own flaws and problems, they also appear 

in the development of the maritime industry. Nonetheless, this progress results in all kinds 

of challenges and also a few disadvantages. In the current landscape, the integration of 

machine learning (ML) presents tremendous possibilities and complexities across various 

facets of human endeavors. To put it simply, machine learning is a distinctive domain within 

the realm of artificial intelligence (AI) that endeavors to construct algorithms proficient in 

scrutinizing data and rendering well-informed judgments devoid of explicit programming 

directives. These methodologies are already finding practical employment in a multitude of 

domains. Among the noteworthy sectors embracing machine learning is the maritime 

industry, which holds a prominent status as a fundamental constituent of global commerce. 

As such an important component, it involves the utilization of automatic identification 

system (AIS) data to enhance various other objectives. This technology enables the 

automated analysis of vast quantities of data, enabling the identification of patterns and the 

ability to make predictions about the future.  

In this technology that allows computers to learn from experience and enhance their 

efficacy, there are numerous advantages and disadvantages. Among the advantages are the 

optimized performance, accuracy, and speed of data analysis. As for the disadvantages, one 

of the drawbacks of AIS data is the potential for falsification, which leads to several 

additional issues. One potential example could be the lack of sufficient data for analysis. 

AIS knowledge insights are collected in real-time, but this can be limited in terms of time 

range or data quality. Therefore, collection and processing can be challenging. Another 

problem can be the obstacle in understanding and interpreting the obtained results of 

machine learning because it is a complex method that can be difficult to understand and 

interpret without adequate knowledge and experience within that domain. Among the 

aforementioned challenges, notable concerns include the absence of transparency in 

decision-making processes, the potential for discriminatory outcomes, and the diminishing 
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human control over decision-making. Consequently, it is important to research and 

understand how ML can impact maritime and apply it in a way that will provide the greatest 

benefits.  

 

 The study’s research section involves the literature review related to certain machine 

learning techniques to a genuine AIS dataset, which demonstrates its effective use of it. The 

findings highlight the value of these results for diverse applications within the maritime 

sector. Briefly showing different articles was the purpose and goal of this thesis, each of 

which describes the way in which AIS data is being used and how it affects and applies to 

maritime affairs. The results and conclusions of these articles have been gathered into one 

interconnected unit. In this first introductory chapter, the problems and subjects of the thesis 

are presented, which then lead to the hypothesis and the purpose, namely the goal, of the 

research. The second part entitled ‘Automatic Identification System’, explains the basic 

characteristic of the considered device and communication system, as well as its main 

components. The device types are also mentioned, as well as the data it offers. It is important 

to process it first in order to facilitate a better understanding of the application of ML on its 

data later on. The main part of the thesis depicts the fundamentals of ML as well as their 

application. These sources provide a comprehensive overview of the practical uses in various 

maritime fields. The analysis highlights key insights and trends that have emerged in recent 

years and showcases how these developments have impacted industries. By examining these 

case studies, it is evident that the application of this method has led to revolution. The focus 

of the fifth section, ‘AIS training data for ML’, is data utilization and anomalies. Current 

challenges, and issues in the deployment, are described in the seventh section. This section 

also encompasses possible upcoming developments to enhance and broaden the subject. 

Overall conclusion of the thesis is addressed in the final section.  

 

 

  



3 

 

2. AUTOMATIC IDENTIFICATION SYSTEM  

 

 In the maritime industry, ensuring safety is paramount, and the invention of the AIS 

has played a crucial role in achieving this objective. AIS, widely recognized and utilized, 

has not only bolstered safety measures within the maritime sector but has also brought about 

a multitude of other advantages. AIS represents an advanced device used for live tracking of 

ships and vessels, providing crucial information, including ship category, call sign, flag 

country, speed, location, heading, and other relevant particulars. The primary objective 

behind developing AIS was to enhance safety at sea by enabling improved visibility among 

commercial vessels in various conditions and providing helmsmen with enhanced 

environmental information, thus serving as a valuable tool for collision avoidance. With that 

said, there are many other assets, such as better route planning and increased safety with the 

ability to quickly identify potential hazards as well as collect traffic data for further analysis. 

Overall, AIS has had a significant impact on improving navigation optimization and 

reliability for mariners, making it an essential tool in modern-day marine operations with a 

simple operating principle and several components within the device itself.  

According to International Maritime Organization (IMO) regulations, every 

international ship with a gross tonnage exceeding 300t and every passenger ship must have 

an AIS transceiver installed. However, some vessels are not obligated to install them due to 

the large size of these transceivers, which can impede the receipt of navigational information 

from other boats and complicate their detection through passive systems. This robust 

instrument consists of very high frequency (VHF) transmitter, very high-frequency digital 

selective calling (VHF DSC) shipboard receiver, and very high-frequency time division 

multiple access (VHF TDMA) receivers. The range can vary, from 20 nautical miles in poor 

conditions to 350 nautical miles for transmissions under favorable atmospheric 

circumstances. The estimated average reception range of AIS receivers is approximately 40 

nautical miles, considering the factors previously listed. In addition, AIS devices can be 

subject to various problems, including network overload and a lack of standardization in data 

collection. To improve the operation and design of AIS devices, advanced technologies, such 

as mentioned machine learning, are being applied [1,2]. Algorithms and statistical models 

are utilized by ML to analyze vast amounts of data and discover patterns that may be 

challenging for humans to discern visually. Applying this method to the analysis of AIS 

device operations can provide a deeper insight into the functioning of the device and uncover 
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Figure 1 Overview of AIS information types 

 

Source: Wakabayashi, N. and Jurdana, I. (2020) Maritime Communications and Remote Voyage Monitoring.  

             Available at: https://doi.org/10.1109/cobcom49975.2020.9174182. [5] 
 

hidden connections between different parameters, which could lead to improvements in 

performance.  

 

2.1. AIS CLASSIFICATION  

 

 When speaking about the improvement, AIS transceivers can be divided into two 

classes (Classes A and B). These two types differ in terms of the number of reported data 

fields they transmit and the frequency at which they report this information [3]. Eleven 

distinct pieces of information can be gathered from a ship’s Class A AIS transceiver, which 

can be further categorized into three distinct types: static data, voyage-related data, and 

dynamic data, as described by Kwang-il Kim et al. [4]. Static information includes 

permanent details about a ship, such as its name, call sign, type, and specifications. This data 

remains unaltered as time progresses. Voyage-related data pertains to a particular journey 

and encompasses information such as cargo specifics, ship draft, and the estimated arrival 

time (ETA). This data remains consistent throughout a singular voyage from the originating 

port to the destination port. Conversely, dynamic information offers up-to-the-minute 

situational particulars about a vessel, encompassing its velocity, course, and global 

positioning system (GPS) coordinates. Examples of static data, voyage-related data, and 

dynamic data are illustrated in Figure 1.  
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The researchers [4,6,7] highlighted the different rates at which these types of 

information are transmitted through AIS. Static and voyage-related information is 

transmitted at regular intervals of 6 minutes, while dynamic information is transmitted at 

different rates depending on the ship's current navigation status. On the other hand, class B 

AIS is typically used on smaller vessels, such as recreational boats. Unlike Class A, which 

is mandatory for commercial vessels over 300 gross tons, Class B is not required by 

international regulations. Nevertheless, many boat owners choose to install Class B AIS 

devices to improve safety and situational awareness while navigating. Also, Class B devices 

operate on lower transmission power, meaning they have a shorter transmission range. 

Additionally, Class A typically reports information more frequently than Class B, which can 

bring Class B to some loss of real-time accuracy in tracking. The pivotal difference between 

these two classes is reflected in the transmission rate, as shown in Table 1, which is 

influenced by factors such as the size of the message and the available bandwidth.  

 

Table 1 Transmit rates of Class A and Class B 

 

 

SHIP’S CONDITIONS 
TYPE OF 

INFORMATION 
CLASS A CLASS B 

Anchored or Moored ship Static information 3 min 3 min 

SOG 0-2 knots Dynamic information 10 sec 3 min 

SOG 2-14 knots Dynamic information 10 sec 30 sec 

SOG 2-14 knots with changing course Dynamic information 3.3 sec 30 sec 

SOG 14-23 knots Dynamic information 6 sec 30 sec 

SOG 14-23 knots with changing course Dynamic information 2 sec 30 sec 

SOG over 23 knots Dynamic information 2 sec 30 sec 

Voyage-related data Static information 6 min 6 min 

Source: made by student based on data from Passage Guardian (no date) Best Practice AIS For 

             Bluewater Sailing Yachts. Available at: https://passageguardian.nz/pages/best-practice-ais-for 

             bluewater-sailing-yachts. (28th April 2023.) [8] 
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Figure 2 AIS time slots 

 

Source: 2022., How AIS Works | Navigation Center (no date). Available at: 

             https://www.navcen.uscg.gov/howais-works, (29th April 2023.) [11] 
 

 

 

The frequency of sending dynamic information by Class A equipment depends on 

the vessel's speed and heading, ranging from every 2 to 10 seconds. During a ship's 

anchorage, a message is broadcasted at regular intervals of 3 minutes. Static information, 

including voyage-related data, is sent every 6 minutes [9]. On the other hand, Class B stations 

exhibit reduced transmission rates and are explicitly tailored for recreational watercraft [9]. 

 

2.2. WORKING PRINCIPLE OF AIS 

 

 AIS system utilizes VHF components because of its frequency range of 156.025MHz 

and 162.025MHz, with a bandwidth of 25kHz [10], which will be explained in the following 

paragraph. This range is subject to international regulations and is reserved for AIS 

communication. In the AIS system, each station creates its schedule for transmitting position 

reports, taking into account its traffic history and predictions of other stations’ future actions. 

To avoid interference, the stations synchronize with each other continuously using 2250 time 

slots that are established every minute. The process of selecting time slots in the system is 

done randomly using a specific interval and an arbitrary timeout ranging from 0 to 8 frames. 

Whenever there is a change in a slot assignment by the station, it broadcasts the new timeout 

and location to guarantee that vessels within radio range are informed about the change, even 

if they have newly arrived. Figure 2 vividly illustrates the principle of transmitting AIS data 

within time slots. 
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Figure 3 AIS - transmitting and receiving data 

 

Source: Passage Guardian (no date) Best Practice AIS For Bluewater Sailing Yachts. Available at: 

             https://passageguardian.nz/pages/best-practice-ais-for-bluewater-sailing-yachts. (28th April 2023.) 
             [61] 
 

A minimum ship reporting capacity of 2000 time slots per minute is mandated by the 

IMO performance standard. Regardless, the system offers a total of 4500 time slots per 

minute. With the self-organized time-division multiple access (SOTDMA) broadcast mode, 

slots can be shared, leading to a potential overload of up to 500% [10]. If there is too much 

demand or excessive use, such that the system cannot handle it, closer targets receive 

priority, and only distant targets may experience dropouts. Additionally, the system is DSC-

compatible, which enables Global Maritime Distress and Safety System (GMDSS) based on 

shore to identify vessels in a cost-effective manner and to form AIS operating channels. 

 

2.2.1. VHF DSC, VHF TDMA, and VHF transmitter 

 

 The basic components of every AIS system are one VHF DSC, two VHF TDMA, 

and one VHF transmitter [11]. It works autonomously and continuously, regardless of the 

location - be it the open sea, shoreline, or land areas, as demonstrated in Figure 3. 

Transmissions use 9.6kb Gaussian minimum shift keying frequency modulation (GMSK 

FM) over 25 or 12.5kHz channels using high-level data link control (HDLC) packet 

protocols [12]. Individual stations receive and transmit via dual radio channels, even though 

only a single radio channel is essential. 
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VHF DSC transmitter operates on the use of pre-selected digital channels, known as 

digital selective calling channels. These channels are used to send and receive distress calls, 

general calls, and other types of messages. To initiate communication, the sender selects the 

appropriate DSC channel and enters the maritime mobile service identities (MMSI) number 

of the recipient. Kraus et al. [9] conducted preprocessing of raw AIS messages to convert 

them into trajectories. They sorted the messages based on the unique MMSI and timestamp, 

creating trajectories with a maximum duration of 2 hours. To ensure data accuracy, they 

checked for errors by calculating the speed between consecutive messages and comparing it 

to the reported speed. Messages with significant speed discrepancies or invalid information 

were removed. Additionally, to handle the large volume of messages, a compression 

algorithm was applied to each trajectory for computational efficiency. Contrarily, VHF 

TDMA involves the use of time-division multiplexing to divide a dedicated VHF channel 

into time slots, which can share the same channel without interfering with each other, making 

VHF TDMA an efficient and reliable protocol for transmitting data within nautical 

surroundings. Moreover, the system is connected to various navigation sensors like global 

positioning system to guarantee the ship’s precise location. The GPS is essential for the 

proper functioning of an AIS device as it supplies the required vessel position and movement 

data to be shared with other vessels and shore stations.  

 

2.2.1.1. Maritime mobile service identities  

 

Each AIS device is assigned a unique 9-digit number, known as MMSI, as an 

essential element of the AIS system. MMSI is employed to ascertain individual vessels, and 

without it, AIS would not be able to function as intended. When an AIS device is installed 

on a nautical craft, that number is programmed into the device’s memory. The MMSI is 

transmitted as part of an AIS message that is broadcast by the device itself, allowing other 

AIS-equipped vessels and shore stations to identify the transmitting vessel. In addition to 

vessel identification, MMSI is used for a range of other purposes, such as facilitating distress 

alerts and communicating with other vessels. For example, if a vessel is in distress, the crew 

uses that 9-digit number to send a distress alert that will be received by nearby objects and 

shore stations that have AIS. Table 2 highlights the allocation of numbers for several 
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countries. In conclusion, the significance of the MMSI within the system cannot be 

overstated, particularly in the context of employing machine learning techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 2 Several countries and their Maritime Identification Digit 

 

 
COUNTRY MARITIME IDENTIFICATION DIGIT 

BAHRAIN 408 

CROATIA 238 

FRANCE 226,227,228 

GERMANY 211 

ITALY 247 

MALTA 229 

PORTUGAL 204 

SPAIN 224,225 

USA 366,367,368,369 

Source: made by student based on data gathered from Table of Maritime Identification Digits (no date).  

             Available at: https://www.itu.int/en/ITU-R/terrestrial/fmd/Pages/mid.aspx. [13] 
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3. MACHINE LEARNING FUNDAMENTALS  

 

The first introduction of the term machine learning had indications in the 1950s when 

AI trailblazer Arthur Samuel constructed the initial self-teaching system for playing 

checkers. He observed that the system’s performance improved as it played more games 

[14,15]. Then the human desire for progress, coupled with the advent of revolutionary ideas 

and technologies, has provided a solid foundation for the continued evolution of machine 

learning. Lately, there has been considerable focus on the rapidly evolving field of ML. It is 

a branch of AI that concentrates on creating computer algorithms capable of learning and 

improving on their own through experience, as said, without being specifically programmed 

to do so. As a result, this kind of approach is distinct from conventional programming, where 

a computer engineer creates a set of instructions to direct a computer on how to convert input 

data into the intended output. This process was simply described by researchers as if you 

were teaching machines to identify objects such as apples and pears. By presenting the 

machines with examples of different fruits, they gradually learn to label apples and pears 

without any assistance, given that they have been trained with suitable and precise examples 

[14].  

 

3.1. WORKING PRINCIPLE OF MACHINE LEARNING 

 

 In order to maximize understanding of the remarkable capabilities and optimal 

utilization of this cutting-edge technology, it is imperative to grasp its operational 

mechanics. The whole process begins with inserting training data (in this case, AIS data) 

into the chosen algorithm. It needs to be noted that different types of data have an impact on 

the algorithm, which is mentioned before. Once new input data is incorporated into the 

machine learning algorithm, it is evaluated to ensure its proper functionality. The predictions 

and outcomes are subsequently cross-referenced to verify accuracy. In case the predictions 

and outcomes do not match, the algorithm undergoes multiple re-training sessions until the 

data achieves the desired outcome. That is how the ML algorithm is enabled to self-learn. 

Its ability to learn and improve from experience makes it a prominent resource for solving 

complex problems and automating tasks that would otherwise require human intervention 
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Figure 4 Machine learning general process 

 

Source: Akanksha, E. et al. (2021) Review on Reinforcement Learning, Research Evolution and Scope of 

             Application. Available at: https://doi.org/10.1109/iccmc51019.2021.9418283. [16] 

 

and are very frequent in the maritime industry. The general process of machine learning is 

depicted in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. MACHINE LEARNING CLASSIFICATION 

 

 Machine learning can be classified into three primary divisions, driven by the 

extensive range of data and diverse learning requirements [15]. This categorization is 

primarily determined by the nature of the learning process and the presence or absence of 

labeled data. Each category has its distinct characteristics and methodologies, offering 

tailored approaches to tackle various learning tasks and extract valuable insights from data. 

The division is as follows [17]:  

1. Supervised learning 

2. Unsupervised learning 

3. Reinforcement learning. 

Supervised learning encompasses training a model on data that has been labeled or 

annotated, where already in advance the correct answer is known. The goal is to teach this 

kind of model to make accurate predictions and generalized out of sample data. Furthermore, 

a substantial body of research confirms the effectiveness of semi-supervised learning 
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methodologies. This particular strategy harnesses the power of labeled and unlabeled data to 

enhance the precision of vessel trajectory classification, exemplifying its potential. Duan et 

al. [18] focused on utilizing the AIS data, which provides trajectory information of maritime 

vessels, for the task of vessel trajectory classification. Their objective was to tackle the 

challenge of scarce labeled data by proposing a semi-supervised deep learning approach. 

Furthermore, authors [18] utilized a blend of kinematic data (speed, heading, coordinates) 

and static information (vessel identification) extracted from AIS messages to derive vessel 

trajectories for classification objectives, as well as Ljunggren et al. [19]. To showcase the 

effectiveness of their approach, the researchers conducted extensive experiments utilizing a 

publicly available AIS dataset. Additionally, they analyzed the implications of their study 

within the realm of ocean management, emphasizing the potential advantages and practical 

applications of their findings in this field.  

In contrast, unsupervised learning includes the training of a model on unlabeled data, 

where the correct outcome remains unknown [20]. The central objective is to unveil patterns 

and underlying structures within the data, leading to the grouping of similar entities together. 

A great example is the research in which authors focused on utilizing unsupervised learning 

and AIS data for vessel trajectory prediction. By employing trajectory clustering and 

classification techniques, Murray et al. [21] introduced a methodology for forecasting the 

future trajectory of a vessel by leveraging historical AIS data. They also proposed a dual 

linear autoencoder approach using historical AIS data to predict the future trajectory of a 

vessel for collision avoidance. Through the utilization of unsupervised learning and 

trajectory clustering, the method predicts the complete trajectory of the chosen vessel. It 

achieves this by estimating a latent distribution encompassing potential future trajectories. 

Through sampling from this distribution, numerous trajectories are produced, providing 

significant insights into the uncertainties linked to the anticipated positions of vessels. 

Schöller et al. [22] also used an encoder for their research, with a novel approach for 

anticipating the trajectories of marine vessels using AIS data. The method introduced a 

unique encoding technique that utilized AIS heatmaps generated through kernel density 

estimation (KDE). The study demonstrated that this method outperformed traditional 

approaches in marine trajectory prediction. By incorporating the AIS heatmap, the proposed 

method was able to accurately predict trajectories that could not be determined solely based 

on previous positions.  
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Finally, reinforcement learning (RL) comprises training a model through trial and 

error [20]. The model improves its performance by receiving rewards or punishments in the 

form of feedback based on its actions in given surroundings [14]. Reinforcement learning, 

despite its relatively lower adoption compared to other machine learning types, carries 

immense importance in the realm of maritime applications. A notable illustration of this can 

be observed in the research undertaken by Meyer et al. [23]. The researchers conducted a 

study focusing on reinforcement learning and artificial intelligence systems in the maritime 

domain. They trained an RL agent using deep reinforcement learning (DRL) techniques to 

create an autonomous vessel capable of avoiding collisions with other vessels while 

following a predetermined path. This kind of method will be analyzed later in the thesis. The 

agent relied on rangefinder sensors to measure distances to nearby obstacles such as 

shorelines and other vessels and made reactive control decisions based on this information. 

The researchers iteratively designed the reward function for the RL agent, incorporating 

additional features to improve its performance. Although increasing the complexity of the 

reward function was not desirable, it was necessary to achieve satisfactory results. The 

introduction of new reward function features immediately improved the agent's guidance 

behavior. One notable advantage of this approach is its ability to operate without prior 

knowledge of the vessel's internal dynamics, providing flexibility for customization of the 

performance measure. This flexibility makes it applicable to a wide range of vessel types 

with complex dynamics.  

As a consequence of all of these referenced methods, ML can enhance its 

performance through acquired knowledge, similar to human learning. Nevertheless, unlike 

people, computers require a substantially larger number of learning examples to reach a 

comparable level of understanding.  
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4. MACHINE LEARNING BASED ON AIS DATA IN MARITIME 

 

In the forthcoming chapters, the aforementioned classifications will be elucidated in 

greater detail. Each classification encompasses several subtypes that will be examined based 

on their applications in the maritime domain. Each type holds its significance and has greatly 

contributed to the development of the infrastructure, as evident from the conclusions drawn 

by the authors who have employed these methodologies in their research articles. 

 

4.1. SUPERVISED LEARNING  

 

 As previously stated in this thesis, there are abundant articles utilizing ML and AIS 

data in maritime infrastructure. By examining those articles, we can conclude that supervised 

learning stands out among these three groups. The fact that it includes the largest number of 

subgroups indicates its widespread adoption and versatility in various applications. This 

observation highlights the extensive application of supervised learning and its relevance in 

different domains. In recent years, several supervised learning techniques have gained 

significant traction. Particularly noteworthy, support vector machines (SVMs), artificial 

neural networks (ANNs), decision trees, memory-based learning, naive Bayes, random 

forests bagged trees, boosted trees, and boosted stumps have emerged as prominent methods 

in the field [24]. These methods have garnered attention for their effectiveness in various 

applications and their ability to handle complex datasets. One of many is energy-efficient 

shipping, highlighted in a research investigation carried out by Abebe et al. [20]. The study 

concluded that the developed models of supervised learning can accurately estimate the 

speed over ground (SOG) of ships, considering various factors such as load conditions, 

weather conditions, sailing distance/direction, and draughts, gathered from AIS. It was found 

that linear regression and polynomial models were not effective in predicting SOG due to 

their highly nonlinear nature over time [20]. In particular, the extra trees regressor (ETR), 

which is a bagging ensemble model, demonstrated high accuracy with low computational 

time in predicting SOG. As the remaining groups will be elaborated on in more detail due to 

their widespread applications, it is worth mentioning random forest trees (RFT) even though 

it is not as used as others. Snapir et al. [25] introduced an approach to categorize synthetic 

aperture radar (SAR) vessel detections into fishing and non-fishing classes. Their method 
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involved employing a random forest (RF) classifier with five input attributes: longitude, 

latitude, length, distance to the nearest shore, and time of measurement (AM or PM). The 

classifier underwent training and evaluation using labeled AIS data, and subsequently 

applied to S-1 (Satellite Sentinel-1) detections obtained from the SUMO detector. Drawing 

from their results, the researchers identified that the length, latitude, longitude, and distance 

to the nearest shore held the utmost importance as features for classification. During 

evaluations conducted on datasets featuring representative sample proportions (12.6% 

fishing, 87.4% non-fishing), the method achieved an overall classification accuracy of 91%. 

However, it should be noted that the precision for the fishing class yielded a modest score 

of 58%. The precision exhibited variation contingent on the location, particularly in regions 

where overlap between the two vessel categories and the non-fishing class prevailed. 

Extending the application of their method, they subsequently employed S-1 data from 2017 

and observed a favorable agreement between their monthly fishing vessel count and the data 

obtained from global fishing watch (GFW) regarding the presence of fishing vessels in 2016. 

Although their vessel count may not provide an exact estimation of the precise number of 

fishing/non-fishing vessels, the outcomes indicated that their approach effectively captured 

the accurate temporal fluctuations in fishing activity. This methodology holds substantial 

value in identifying changes in fishing efforts, such as intensification or reduction, which 

play a pivotal role in addressing the global issue of overfishing. 

 

4.1.1. Support vector machine 

 

 Support vector machine algorithms are potent supervised learning methods that 

portray training data as points in a multidimensional realm and establish stringent boundaries 

amidst clusters [24]. By mapping new input tuples into this space and measuring their 

distances from other categories, they are assigned to specific categories. SVM has been 

considered a state-of-the-art model in shallow machine learning approaches [26]. Despite 

having a small training set, SVM exhibits impressive generalization capabilities. In one 

study, Ichimura et al. [26] expected to achieve excellent performance with SVM, even when 

handling a limited number of data points per vessel. They aimed to address the issue of 

unreliable AIS signals by proposing a method to accurately classify the ship type using AIS 

data. They recognized that incorrect AIS settings could hinder the trustworthiness of the 
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Figure 5 Example of learning data for SVM 

 

Source: Nishizaki, C. et al. (2018) Development of Navigation Support System to Predict New Course of 

             Ship. Available at: https://doi.org/10.23919/wac.2018.8430436. [27] 
 

signals. In order to support traffic management and enhance safety measures, the study 

focused on extracting distinctive features, referred to as "signature characteristics", from the 

AIS signals of ships. These features were then utilized in a machine learning model for ship 

type classification, enabling more precise identification of ships based on their AIS data. 

Furthermore, the objective of the study made by Nishizaki et al. [27] was to present a novel 

approach for optimizing the utilization of navigational big data within the advanced 

navigation system (ADNAVIS) to enhance the safety of ship navigation. The focus of this 

study revolves around the development of a prediction method that effectively determines 

the next course of a ship upon exiting a traffic route in Tokyo Bay. By employing SVM, the 

proposed method offers a reliable and accurate prediction mechanism, ensuring enhanced 

navigation safety in critical areas. Using AIS data, they focused on accurately understanding 

ship behaviors. AIS data, transmitted by each ship, consisted of static information (e.g., ship 

details) and dynamic information (e.g., position, speed, navigational status). Example of 

used learning data can be seen in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

In order to train AI models, the researchers performed interpolation on the dynamic 

information of AIS data, ensuring that data points were available every second. The 

researchers performed test cases aimed at predicting whether a ship would anchor in the bay 

or proceed directly to the port, thereby classifying the associated AIS data into distinct 

categories. To assess the predictive capabilities concerning a ship's subsequent course, the 

authors conducted two specific test cases [27]. The outcomes demonstrated that the accuracy 

of predicting a ship's next course at the exit of the traffic route achieved an impressive rate 

of 87.9%. Furthermore, the accuracy for predictions made five minutes prior to the exit 

stands at 80.3%, while the accuracy for predictions made ten minutes prior to the exit is 

77.0% [27]. However, for practical application, further improvements are required to 

enhance the prediction accuracy [27]. 

Many others used this technique with great results, such as Coleman et al. [28] for 

behavioral anomaly detection, and Ginoulhac et al. [29] for coastal radar target recognition 

by focusing on utilizing AIS data to devise a method for classifying targets based on their 

kinematic information. The researchers employed AIS data to acquire labeled trajectories, 

establishing a proof of concept that could potentially be applied to radar tracks in the future. 

Their proposed approach involved extracting statistical features from different temporal 

variables, including speed and acceleration. These extracted features were utilized as input 

for a gradient boosting classifier. The findings showcased that the method achieved an 

impressive classification accuracy of approximately 86% when dealing with seven distinct 

classes, comparable to the current state-of-the-art methods in the field. This suggests its 

potential applicability in radar systems for target classification based on trajectory 

information. Lang et al. [30] demonstrated the potential of leveraging AIS knowledge to 

improve SAR ship classification performance using one type of SVM classifier. They 

proposed an enhanced multiclass A-SVM with simpler naive geometric features (NGFs), 

conducting comprehensive experiments that showed significant improvements compared to 

traditional methods, especially with limited training samples. The proposed classifier's 

performance was further enhanced by selecting an optimized feature combination, and its 

effectiveness correlated weakly with the number of labeled samples. However, the method's 

limitation was its reliance on length and width as transferable features from AIS, suggesting 

the need for future research to incorporate additional features from SAR images. Even 

though Kim et al. [4] proposed the convolutional neural networks (CNN) method, which is 

a part of ANNs, they used SVM to compare gained results. This means that even though the 
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SVM method itself is not directly used, it still serves to improve and advance another utilized 

approach. 

 

4.1.2. Artificial neural networks  

 

Artificial neural networks are highly sophisticated machine learning tools inspired 

by the complex networks of neurons found in biological systems. They have gained 

prominence across various domains, offering valuable insights where the underlying 

functions are intricate and not fully understood. In the maritime industry, ANNs have been 

extensively applied to vessel activity identification, with a particular focus on fishing 

vessels. A notable study referenced by authors [24] delved into the identification of "métier," 

which refers to groups of vessels sharing similar fishing patterns, such as gear usage, fishing 

grounds, and target species, over extended periods. To tackle this challenge, the researchers 

employed ANNs, specifically utilizing a multilayer perceptron network (MPN), to 

accurately allocate fishing efforts at the individual trip level to specific métiers. Similarly, 

in other investigations, ANNs have been employed in conjunction with vessel monitoring 

system (VMS) data to differentiate between fishing and non-fishing points along vessel 

tracks or to infer fishing tactics based on daily landing data [24]. These applications 

exemplify the versatility and effectiveness of ANNs in the maritime domain, offering 

perspectives into vessel behavior and facilitating improved fisheries management.  

Furthermore, ANNs have proven instrumental in diverse fields, including speech 

recognition [31] and target recognition, offering a comprehensive approach to complex data 

analysis through interconnected nodes arranged in input, hidden, and output layers [32]. 

These nodes are linked to weights that are determined using training data, enabling ANNs 

to approximate the connections between inputs and outputs, similar to conventional 

multivariate regression analysis [32]. A vivid depiction of such nodes is shown in Figure 6. 
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Figure 6 Artificial neural network nodes 

 

Source: Cherukuri, H.P. et al. (2019) “Machining Chatter Prediction Using a Data Learning Model,” Journal  

             of Manufacturing and Materials Processing, 3(2), p. 45. Available at:  

             https://doi.org/10.3390/jmmp3020045. [33] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.3. Decision tree regressor 

 

A regression method for supervised learning that does not rely on fixed parameters, 

under the name of decision tree Regressor (DTR), partitions features into a rectangular space 

and trains a simple model (tree) for each feature [34]. Its most common method is 

classification and regression trees (CART) in which the feature space is repeatedly 

partitioned into two regions until certain stopping criteria are met in this process [34]. To 

develop the model, for a given 𝑛 number of dataset samples and 𝑑 number of features, 

𝐷{(𝑋𝑖, 𝑌𝑖)} (|𝐷| = 𝑛, 𝑋𝑖 ∈ 𝑅𝑑, 𝑌𝑖 ∈ 𝑅) the feature space is assumed to be split into 𝐾 − 

number of regions, called 𝑅𝐾 and the prediction value of the model is obtained from the 

average number of observations [20]. The process of finding the optimal value is simple and 

can be calculated with formula (1), but it poses considerable difficulty to divide the region:  

𝑌̂𝑖 = 𝑎𝑣𝑒(𝑦𝑖|𝑥𝑖 ∈ 𝑅𝐾)                                                            (1) 

In their approach [20], the researchers aimed to obtain the best-predicted values, 𝑌̂𝑖, by 

minimizing the least square error of the difference between the true values, 𝑦𝑖, and the 

predicted values. While calculating the optimal 𝑌̂𝑖 values is relatively straightforward, the 
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challenge lies in determining the optimal splitting nodes within the region. To address this, 

they employed a greedy algorithm that iteratively determines the optimal splitting nodes 

until a stopping point is reached [20]. The stopping point is typically determined based on 

the hyperparameters and the complexity of the underlying problem. This iterative process 

allows for efficient and effective determination of the optimal splitting nodes, leading to 

improved prediction performance. In order to optimize the model, the proper hyperparameter 

values need to be selected. This is typically done through a process called grid searching, 

which involves evaluating all possible combinations of hyperparameters to find the best one. 

The hyperparameters that need to be specified include [20,35]: 

• the maximum depth 

• minimum number of samples needed to split an internal node  

• minimum number of samples required at each leaf node 

• the number of features to consider during the search for the optimal split.  

 

However, the studies acknowledged certain limitations and challenges associated 

with AIS data. As described by Abebe et al. [20], data acquired for ML speed prediction for 

efficient shipping is AIS data as well as weather data obtained from 14 tankers and 62 cargo 

ships within 3 min intervals to estimate SOG. Static and dynamic information given by AIS 

is described in Paragraph 2 of this thesis, whose collection is more or less simple. The real 

problem one can encounter when using this method is weather data, which undoubtedly 

affects ship speed so it must be included. The most influential weather conditions are waves 

(causing the additional resistance), the viscosity of the water, and ocean currents (affecting 

ship heading and speed [20]). The chosen features, among those mentioned, are gross 

tonnage, wind, temperature, salinity, ship dimensions, dead weight, and course over ground 

(COG).  

 

4.1.4. Memory-based learning 

 

 In the field of machine learning, memory-based learning, also known as instance-

based learning [36], is a group of learning algorithms that make predictions or decisions by 

comparing new instances with previously observed ones stored in memory [37]. Unlike 



21 

 

traditional learning algorithms that perform explicit generalization, memory-based learning 

directly constructs hypotheses based on the training examples themselves. This flexibility 

allows the hypothesis complexity to expand alongside the data, enabling the model to adapt 

to previously unseen instances. One key advantage of memory-based learning is its ability 

to dynamically update the model by incorporating new instances or discarding old ones [38]. 

This "lazy" approach defers computation until a new instance is encountered, offering 

computational efficiency and the potential for effective adaptation to changing data. By 

leveraging the stored knowledge of past instances, instance-based learners can handle 

complex and evolving patterns in a wide range of applications. This was proven to be most 

effective in anomaly detection in AIS devices. The availability and utilization of AIS data 

posed both advantages and challenges in the studies explained in used articles. AIS 

messages, recorded via satellites with a sampling frequency of approximately one hour per 

vessel, served as the foundation for the majority of the researchers.  

Another approach is by utilizing location-based and data-driven approaches [28]. The 

primary objective was to present a behavioral model for anomaly detection in AIS using 

machine learning techniques [28]. The study that dealt with the development of that method 

aims to address the challenge of identifying anomalous behavior in AIS data, which can also 

be useful for maritime security and safety purposes. Also, it is a great example of the 

mentioned disadvantage of the device – falsifying AIS data, because the automatic 

identification system lacks encryption and message authentication. This means that any 

message can be broadcast by any vessel. Considering there are over 400 000 installments of 

the device, with the fact that any message can be sent as if it is from another vessel [28], this 

defect needs to be taken seriously. A machine learning-based anomaly detection scheme 

proved to be an effective solution. The aforementioned two types of data were used. 

Location-based approaches analyzed the current location and vessel trajectory. For this 

dataset, they collected ideas and opinions from other experts and researchers to arrive at the 

best solution. The first mentioned was Liang et al. [39] who proposed a two-step supervised 

learning approach using long short-term memory (LSTM) to reconstruct a ship’s trajectory 

in the event of lost AIS location data. This can occur when the AIS transceiver is unable to 

transmit due to a shortage of available time slots, resulting in resource starvation and also 

due to unfavorable weather conditions. The AIS system plays a crucial role in ship tracking 

and providing position reports, resulting in a wealth of data that can be applied in different 

maritime applications, including enhancing security and improving transportation 
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Figure 7 LSTM cell with its internal structure 

 

Source: Hrnjica, B. and Bonacci, O. (2019) “Lake Level Prediction using Feed Forward and Recurrent  

             Neural Networks,” Water Resources Management, 33(7), pp. 2471–2484. Available at: 

             https://doi.org/10.1007/s11269-019-02255-2. [40] 

efficiency. LSTM overcomes this problem by incorporating a series of ‘memory cells’ that 

can selectively retain or forget information over time. The memory cell of the model 

incorporates multiple gates that regulate the ingress and egress of data, as shown in Figure 

7. These gates can be thought of as filters that allow the cell to process information based on 

its relevance to the current task. 

 

𝑥𝑡  – input 

𝑓𝑡 – forget gate  

𝑖𝑡 – input gate 

𝑐̃𝑡 – cell update 

𝑐𝑡 – cell state 

𝑜𝑡  – output gate 

ℎ𝑡 – output 

 

 

 

 

 

 

 

 

 

Another usage was for Data-Driven Trajectory Quality Improvement for Promoting 

Intelligent Vessel Traffic Services in 6G-Enabled Maritime IoT Systems [41]. Vessel 

trajectories are a type of time-series data that consists of spatial points with timestamps. It is 

crucial to acknowledge that the sequential timestamps within a singular vessel trajectory are 

interdependent owing to the vessel's consistent stability during navigation [41]. In order to 

handle these trajectories and overcome the obstacles of long-term time-series data, the study 

explored the use of recurrent neural networks (RNNs) and specifically focused on the 

application of long short-term memory networks. LSTM was also introduced by Hochreiter 

and Schmidhuber as a solution to capture long-term dependencies in recurrent networks. The 

architecture of the LSTM memory block was employed to effectively learn and reconstruct 

vessel trajectories, overcoming issues such as gradient exploding or vanishing that simple 

RNNs often encounter when dealing with long-term data. On the other hand, Tang et al. [42] 

introduced a long short-term memory model specifically designed for probabilistic ship 
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position prediction. In their research, the authors focused on the prediction of vessel 

trajectories in port regions for autonomous navigation systems. They proposed a model using 

LSTM and sequence prediction techniques to accurately forecast vessel trajectories. The 

model was trained and tested using real-world AIS data from the port of Tianjin, China. The 

experimental results confirmed the model's ability to predict ship trajectories accurately, 

showcasing its potential for enhancing autonomous navigation systems. Another study, 

similar to the previous one, trained the model using AIS data and aimed to estimate the 

positional density at a specified point in the future [43]. By predicting the variance, mean, 

and covariance of a bivariate Gaussian distribution [43], the LSTM model provided insights 

into the likelihood of ship positions. Nevertheless, a drawback of this method was its 

inability to generate a comprehensive trajectory as it could solely anticipate the future 

position for a solitary time step. Moreover, it necessitated the predicted point to align with 

the timeframe of the input data, implying that a 10-minute input data was mandatory to 

forecast a position precisely 10 minutes in advance [22]. Liu et al. [41], proposed a two-

phase vessel trajectory reconstruction framework that utilizes the bidirectional long short-

term memory (BLSTM) model. This particular model was selected for its capability to 

proficiently restore deteriorated timestamped points within vessel trajectories by capturing 

intricate non-linear patterns and executing reliable pattern extraction. By leveraging the self-

similarities present in vessel trajectories, the BLSTM model aimed to improve the quality of 

the reconstructed trajectories. The effectiveness of the proposed framework was assessed by 

conducting experiments on both synthetic and real-world trajectory datasets, demonstrating 

its ability to enhance the quality of vessel trajectories. Furthermore, by accurately detecting 

outliers and pinpointing their positions, the BLSTM model was utilized to capture intricate 

sequential patterns from extensive historical vessel trajectories, leveraging a data-centric 

approach. 

 

4.2. UNSUPERVISED LEARNING  

 

 Murray used unsupervised learning to enhance trajectory clustering and 

classification, incorporating a set of historical AIS trajectories clustered together [44]. They 

aimed to enhance the ship navigators' high-level situation awareness by emulating the 

cognitive process of human situation awareness using machine learning techniques. 
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Historical automatic identification system data was leveraged to develop categorization 

functions and generate meaningful representations of ship behavior patterns. The researchers 

also developed methods for pattern matching and predicting future ship behavior within 

specific clusters, intending to facilitate proactive collision avoidance actions. Two 

approaches, eigendecomposition-based and deep learning-based, were utilized successfully 

to discover behavior clusters, classify trajectory segments, and predict future ship behavior. 

The deep learning models, although requiring more training time, provided almost 

instantaneous predictions once trained. Conversely, this kind of method can be used for 

anomaly detection just like supervised learning but with the difference of supervised learning 

methods relying on labeled training data to construct the learning model [45]. Among the 

different types, unsupervised learning methods stand out, where unlabeled training data is 

employed to build the learning model through clustering algorithms [45]. These distinct 

approaches offer unique advantages and are applied in various scenarios based on the 

availability of labeled or unlabeled data, contributing to the effectiveness and versatility of 

machine learning. Through an in-depth analysis of the selected articles, we can draw the 

following conclusion: Two of the most popular subgroups of unsupervised learning used in 

maritime are density-based spatial clustering of applications with noise (DBSCAN) and 

trajectory representation, exploration, and analysis for discovery (TREAD). 

 

4.2.1. DBSCAN 

 

Density-based spatial clustering of applications with noise is an exceptionally 

efficient clustering algorithm developed on the principle that clusters demonstrate dense 

areas in space, with gaps separating them in regions of lower density. This algorithm 

effectively identifies densely packed data points and groups them as a single cluster. This 

approach allows for the detection of clusters of varying shapes and sizes, making it 

particularly useful in scenarios where the data may have irregular or non-linear structures. 

This method was used for the detection of search and rescue (SAR) vessel patterns [24]. 

Also, in an article about enhancing maritime surveillance [46], the authors gave an excellent 

explanation of how exactly this method is used. They concluded that DBSCAN relies on two 

parameters: 𝜀 and 𝑚𝑖𝑛𝑝𝑡𝑠. Points with more than 𝑚𝑖𝑛𝑝𝑡𝑠 within their 𝜀-neighborhood are 

designated as core points. The algorithm then proceeds to determine the connection 



25 

 

components on the neighborhood graph. The remaining points are connected through a 

connectivity component if they fall within an ε-neighborhood of core points [46]. Points that 

do not meet these criteria are considered outliers, as shown in Figure 8. By employing the 

DBSCAN algorithm and these sequential steps, it becomes possible to effectively cluster 

routes and identify points of interest within the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Different extensions of the DBSCAN algorithm exist to address specific clustering 

requirements. Instances of such techniques encompass the utilization of ordering points to 

ascertain the clustering structure (OPTICS), hierarchical density-based spatial clustering of 

applications with noise (HDBSCAN), and subspace clustering (SUBCLU), which focus on 

hierarchical clustering or subspace clustering [46]. These improvements are important as 

they allow for a certain level of parallelization in the clustering process. Once points of 

interest have been identified, the subsequent stage in the analysis involves clustering the 

routes connecting them. There are various techniques available for clustering routes, each 

requiring specific metrics to quantify the level of similarity. One widely used method is 

dynamic time warping (DTW). DTW compares two series, P and Q, which represent the 

plots of separate routes. The algorithm actively seeks a wrapping path, which is a sequence 

of points that initiates from the starting point of P and Q and terminates at their respective 

Figure 8 Schema of DBSCAN 

 

Source: Dästner, K. et al. (2018) Machine Learning Techniques for Enhancing Maritime 

             Surveillance Based on GMTI Radar and AIS. Available at: 

             https://doi.org/10.23919/irs.2018.8447961. [46] 
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endpoints. This wrap path ensures a valid transformation between the routes, with 

monotonically increasing components. The DTW distance, calculated as the minimum sum 

of distances between corresponding points along the wrapping path, can be efficiently 

computed using a recursive formula and backtracking. Alternatively, other approaches such 

as HausDorff Frechet, one-way, or symmetrised-segment-path-distance can be utilized in 

place of DTW [46]. The approach utilized by Dästner [46] involves dividing AIS plots into 

partitions based on similar course vectors. Plots sharing the same course domain are grouped, 

and a DBSCAN algorithm is utilized to geo-cluster segments exhibiting similar courses. 

While representing the identified route clusters, it is common practice to employ an 

averaging route. However, finding an exact solution to this problem poses challenges, as 

non-linear alignment and average filter (NLAAF) methods are solely applicable to two 

sequences, while approximate methods are employed for more than two sequences. These 

varied clustering approaches offer flexibility in analyzing and representing the data 

according to the specific requirements of the given problem. 

 Nonetheless, its widespread application is evident in various domains, as shown by 

Martinčič et al. [47]. In this context, DBSCAN was utilized similarly as previously 

described. By leveraging validated AIS data, DBSCAN was employed to cluster and analyze 

vessel and port efficiency metrics. This allowed for the identification of patterns and 

anomalies in the data, enabling informed decision-making and optimization of vessel and 

port operations. The versatility of DBSCAN makes it a valuable tool in diverse applications 

where spatial clustering and analysis are required. 

 

4.2.2. TREAD 

 

 For the second group, it is important to mention trajectory representation, 

exploration, and analysis for discovery. TREAD is an unsupervised learning approach 

specifically designed for maritime trajectory data analysis. It aims to uncover patterns and 

extract valuable insights from large-scale vessel trajectory datasets. TREAD employs a two-

step process: trajectory representation and trajectory exploration. In the trajectory 

representation step, TREAD transforms raw trajectory data into a meaningful and compact 

representation. It accomplishes this by employing dimensionality reduction methods, such 

as principal component analysis (PCA) or dynamic time warping, similar to the approach 
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used in DBSCAN, to capture the essential characteristics of the trajectories while reducing 

computational complexity. Once the trajectories are represented, the trajectory exploration 

step begins. TREAD employs various clustering algorithms, based on density-based spatial 

clustering of applications with noise, to group similar trajectories based on their spatial and 

temporal properties [48]. This allows for the identification of significant maritime patterns, 

such as common routes, ports of call, or areas of high traffic density. Furthermore, TREAD 

provides visualization tools to analyze and interpret the discovered patterns. It allows users 

to interactively explore the clusters and individual trajectories, enabling the identification of 

outliers, anomalies, and other interesting phenomena. Overall, TREAD offers a 

comprehensive framework for unsupervised learning in maritime trajectory analysis. It aids 

in uncovering actionable intelligence, understanding vessel behavior, optimizing maritime 

operations, and supporting decision-making processes in the maritime domain. [45] 

 

4.3. REINFORCEMENT LEARNING  

 

 Reinforcement learning, another branch of machine learning, focuses on maximizing 

cumulative rewards to learn optimal strategies for achieving goals. RL allows agents to 

directly interact with the environment and evaluate action values, reducing the reliance on 

extensive training data. The agent observes the environment state, takes actions based on a 

policy, receives feedback rewards, and sequentially transitions to new states to maximize 

long-term rewards [49]. Reinforcement learning was introduced by Guo et al. [49] for 

intelligent route planning of unmanned ships in unfamiliar environments. Although RL has 

multiple subdivisions depending on the field of application, when it comes to its utilization 

in maritime settings, DRL is by far the most significant. Other types are not as widely 

adopted or used effectively. Therefore, we will focus exclusively on DRL in this thesis which 

is covered in the following subsection. The visual representation of RL working principal is 

shown in Figure 9. 
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Figure 9 The Principle of Reinforcement learning 

 

Source: Guo, S. et al. (2020) “An Autonomous Path Planning Model for Unmanned Ships Based on    

             Deep Reinforcement Learning,” Sensors, 20(2), p. 426. Available at: 

             https://doi.org/10.3390/s20020426. [49] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.1. Deep reinforcement learning 

 

 DRL combines DL (Deep Learning) and reinforcement learning, leveraging DL's 

perception capabilities and RL's decision-making abilities. It has demonstrated notable 

advancements in continuous motion control and effectively tackles the limitations associated 

with conventional unmanned ships in terms of path planning [49]. Through the progressions 

made in technologies such as artificial intelligence, big data, and cloud computing, ships 

have undergone a notable enhancement in their intelligence. As a result, the future trend of 

unmanned ships has arisen. Unmanned surface vehicles (USVs) are small, intelligent vessels 

used for specific tasks such as maritime rescue, surveys, and hazardous goods monitoring 

[8]. Those kinds of ships were the main focus of research by Shi et al. [50] where they 

established a theoretical foundation for developing intelligent collision avoidance systems 

for USVs. The researchers introduced a novel approach called the double gated recurrent 

unit-recurrent neural network (GRU-RNN), which effectively learned the decision-making 

process for collision avoidance based on successful case data. By leveraging two GRU-RNN 

networks, they accomplished successful processing of both their own ship trajectory data 

and target ship trajectory data. This method demonstrated the ability to handle trajectories 

of varying lengths, offering enhanced flexibility and generating more accurate collision-

avoidance decisions. The proposed algorithm involved extensive training with big data and 
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exhibited wide-ranging applications and versatility, enabling the generation of timely 

strategies and responses for improved collision avoidance security. The researchers 

specifically employed the deep deterministic policy gradient (DDPG) algorithm, a type of 

DRL algorithm suitable for continuous action spaces, for an anti-roll control system on a 

ship, as shown in Figure 10 [51]. DDPG utilizes a deep network structure and policy gradient 

algorithm to select actions based on learned strategies and outputs specific action values 

[52]. DDPG has been successfully applied in the transportation sector, particularly in 

driverless cars and unmanned ships [51]. In order to ensure safety, these vehicles often 

necessitate continuous motion control, strict adherence to traffic rules, and the expertise of 

human operators with operational experience [53]. DDPG's self-learning and function-fitting 

abilities make it a promising approach in the maritime domain, offering the potential for 

further expansion and application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Based on the conducted research and analysis, it can be concluded that deep 

reinforcement learning proves to be a remarkably effective approach in tackling continuous 

control problems, thereby establishing its popularity as a preferred choice in diverse 

INPUT WAVE CONDITION 

SHIP MOTION RESPONSE 

ROLL ANGLE ROW ANGULAR 

ACCELERATION  

DDPG ALGORITHM 

CONTROL MOMENT 

INPUT RANDOM NOISE 

Figure 10 Iterative training process of the ship anti-roll control with the DDPG 

                 algorithm 

 

Source: made by a student based on Figure 3 from Lin, J. et al. (2022) “Intelligent ship anti-rolling control 

             system based on a deep deterministic policy gradient algorithm and the Magnus effect,” Physics of 

             Fluids, 34(5), p. 057102. Available at: https://doi.org/10.1063/5.0089697. [51] 
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domains, including path planning. In the context of unmanned ships operating in unknown 

environments, an autonomous path-planning model based on DRL has been developed [49]. 

This model utilizes the mentioned deep deterministic policy gradient algorithm and acquires 

optimal action strategies by continuously interacting with the environment and leveraging 

historical experience data [53]. To guarantee the integrity and reliability of the intended 

trajectory, regulations pertaining to navigation and encounter scenarios are converted into 

zones with navigational restrictions. The training process employs vessel data extracted from 

the automatic identification system. Moreover, an improved version of deep reinforcement 

learning is achieved by combining the deep deterministic policy gradient algorithm with the 

concept of artificial potential fields. This fusion results in a path-planning model that 

seamlessly integrates with an electronic chart platform for thorough testing and evaluation. 

Comparative experimental evaluations unequivocally demonstrate that the upgraded model 

empowers autonomous path planning with the commendable speed of convergence and 

unwavering stability. These compelling findings underscore the substantial prospects offered 

by DRL-based methodologies in advancing the efficiency and safety of unmanned maritime 

operations. To conclude, the researchers [49] explored the concept of DRL and its 

application in the field of unmanned ships. Deep learning has been utilized to extract 

accurate feature samples from input data, leading to significant advancements in object 

recognition, detection, and voice recognition. DL also makes use of deep neural networks to 

automatically learn high-dimensional data features through iterative processes such as 

backpropagation and training [53].  
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5. AIS TRAINING DATA FOR MACHINE LEARNING 

 

 Training data refers to a collection of instances used to train a machine learning 

algorithm. The main purpose of this sort of data is to enable the algorithm to learn patterns 

and correlations from the data and leverage the acquired knowledge to formulate predictions. 

Important considerations when selecting AIS training data for ML are [20]: 

1. Data quality: AIS data can contain noises and defects. It is important to clean and 

                      preprocess the data before using it for ML. 

2. Data volume: ML techniques entail a large amount of data for making accurate 

                        predictions and patterns. 

3. Data diversity: Collected data should be diverse enough to cover a range of vessel 

                         types, sizes and behaviors.  

4. Data privacy: AIS data can contain sensitive information such as vessel cargo 

                        and routes.  

5. Data labeling: It refers to relevant information. 

 

AIS training data should be of high quality, diverse, voluminous, appropriately 

labeled, and privacy compliant. The study conducted by Kim et al. [54] places significant 

emphasis on the specific aspect mentioned. The researchers specifically address two 

challenges encountered in implementing fully connected neural networks (NN) for speed 

regime modeling: data quality and accessibility. They discuss these challenges in detail and 

propose techniques to mitigate them. Understanding the advantages and limitations of fully 

connected NN is crucial for harnessing its predictive capabilities to enhance safety, 

emergency response, and transport planning in Arctic voyages. Without it, the algorithm 

would not have sufficient information to learn from and could produce inaccurate or biased 

results. As with everything else, precise and proper preparation results in maximum 

beneficial output, and the same goes for ML. 

 In previous studies, obtaining training data for ship analysis through visual 

interpretation has proven challenging. Most studies utilized SAR images in combination 

with convolutional neural networks containing limited coverage and a small number of 

vessels, which turned out to be the most effective way [55]. To address this, researchers 

started extracting training data by interpolating the AIS positions to precisely match the 
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ship's position at the time of image acquisition. Preprocessing the training data can also 

enhance the efficiency and relevance of the machine learning technique while addressing the 

issue of blind learning. Even though this data is necessary for any ML methods, the most 

attention was garnered in articles that focused on ship detection [56], convolutional neural 

network-based gear type identification [28], ship classification [39], trajectory predictions 

[57], and for classifying regional ship collision risk levels [58]. Different approaches for 

collecting training data are employed depending on their suitability for the specific method 

being used. In the following subsections, an analysis of methodologies used for analyzing 

that data will be described, drawing insights from relevant articles where they have been 

successfully applied. When considering these methods, it is important to recognize that 

although they all utilize training data with a focus on dealing with data problems, they 

diverge in terms of their underlying algorithms, objectives, and specific applications within 

the maritime domain. It's important to choose the most appropriate method based on the 

specific problem and requirements at hand and to be able to use additional help like SAR 

images, heatmaps, and others. Figure 11 shows samples of SAR images from Chang et al. 

[59] where they were used for evaluating the performance of the YOLOv2 deep network 

architecture for vessel detection. Their experiments showed that YOLOv2 outperformed 

existing technologies in terms of accuracy and real-time performance, especially in complex 

scenarios. They compared it to faster region-based convolutional neural networks (R-CNN), 

which had lower accuracy in specific areas. YOLOv2 demonstrated faster detection speed 

and better accuracy than recent methods. However, considering the need for real-time 

systems, the authors introduced YOLOv2-reduced, which achieved even faster detection 

times without compromising accuracy. The proposed method showed significant 

improvement over YOLOv2 on a specific GPU, offering faster detection by 2.5 times while 

maintaining competent accuracy on the SAR ship detection dataset (SSDD). 
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Figure 11 Sample images from the SAR ship detection 

 

Source: Chang, Y.-L. et al. (2019) “Ship Detection Based on YOLOv2 for SAR Imagery,” Remote Sensing,  

             11(7), p. 786. Available at: https://doi.org/10.3390/rs11070786. [59] 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

5.1. CNN METHOD 

 

 Convolutional neural networks are powerful mathematical models used for various 

applications [60,61], including target recognition, image classification, and ship 

classification [62], but most importantly, for processing AIS training data. Salem et al. [62] 

introduced an enhanced model architecture for ship classification in inland waterways. Their 

approach incorporated transfer learning and ensemble learning techniques, leveraging 

optimized convolutional neural network models. This methodology aimed to improve the 

accuracy and performance of ship classification in inland waterway scenarios. The model 

achieved a success rate of 98.38% and outperformed other algorithms. The system was 

trained using the "Game of Deep Learning" dataset, consisting of cargo, military, carrier, 

cruise, and tanker ships. The best model architecture was improved through hyperparameter 

optimization using the particle swarm optimization (PSO) algorithm [63], and a new 

classification block was added for better performance. The proposed method was validated 

on the MARVEL dataset with an accuracy of 96.36% and demonstrated superior 

performance compared to existing algorithms. Future work will focus on improving the 

method for different weather conditions and noisy images to meet the requirements of a 
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modern vessel classification system. As already said, ANNs consist of interconnected nodes 

organized in layers, where weights are determined through the utilization of training data to 

correspond the given inputs with desired outputs [58]. CNNs, a more advanced version of 

ANNs, excel in complex classification tasks, particularly image recognition. Images are 

represented as 3-dimensional volumes in CNNs, where different layers perform neuron 

activations to interpret and classify images. CNNs have demonstrated impressive 

performance compared to other deep learning architectures, effectively addressing 

challenges such as large weight and gradient divergence. In the maritime domain, CNNs are 

also employed to interpret images specifically for assessing ship-ship collision risk [32]. In 

this case, AIS data fields are used to construct inputs for CNN collision risk analysis, as 

shown in Table 3. 

 

Table 3 AIS data fields applied in constructing inputs for CNN collision risk analysis 

              mode 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

DATA FIELD UNIT EXPLANATION 

MMSI number [ = ] 9-digit code for identifying a vessel 

Timestamp [ S ] Time at which the message is recorded 

Position [ = ] Longitude and latitude of the transmitted message 

Ship type [ = ] 2-digit code identifying the vessel type 

Ship length [ m ] Ship dimension from bow to stern 

Ship speed [ kn ] Speed over ground  

Ship course [ ° ] Course over speed  

Source: made by student based on Table 2. from Zhang, W. 2020., ‘Towards a Convolutional Neural 

             Network model for classifying regional ship collision risk levels for waterway risk analysis, 

             Reliability Engineering and System Safety’ [32] 
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The core method of CNN involves three aspects: local receptive field, weight sharing, 

and pooling [32]. The local receptive field connects hidden layers to specific parts of an 

image, reducing dimensionality and computational complexity. Weight sharing ensures 

identical weights within the same convolution kernel, reducing training parameters and 

enabling image padding. Pooling layers summarize neighboring neuron outputs, 

compressing feature maps and extracting main image features. While training data 

significantly affects CNN performance, previous studies have primarily focused on 

enhancing the model's architecture. In ship detection, machine learning techniques like 

ANN, support vector machine, and CNN has gained prominence. Many studies have aimed 

to improve CNN parameters for high performance and efficiency. One of them was the study 

by Do Nascimento et al. [64], in which an application using convolutional neural network 

was developed for image recognition in the field of maritime safety. The goal was to identify 

the type of ship and assess the risk of accidents using images of vessels and plimsoll disks. 

Six different CNN architectures were evaluated, including variations in the number of filters, 

convolutional layers, and the use of transfer learning with the VGG-16 network (CNN that 

is 16 layers deep) and fine-tuning. The results showed promising outcomes, indicating the 

potential of CNN as a method for accurately identifying vessel images and assessing accident 

risks based on plimsoll disk analysis. This research highlights the application of AI and deep 

learning techniques to improve maritime safety. 

On the other hand, the main objective of Song et al. [55] was to verify the enhanced 

detection capabilities offered by automatic identification system-assisted training data in 

contrast to manually curated training data. Through the utilization of a conventional 

convolutional neural network-based object detector and a comprehensive evaluation of both 

datasets, the study accomplished this objective [55]. Even though this process can be costly 

and laborious because of the large number of potential combinations, the CNN method is 

also employed to construct potential ML models for predicting ship velocity [65] and for 

ship classification [66]. Example of CNN structure for ship classification is shown in Figure 

12. 

 

 

 



36 

 

Figure 12 Typical convolutional neural network structure for ship classification 

 

Source: Ren, Y.-M. et al. (2019) “Multi-Feature Fusion with Convolutional Neural Network for Ship 

             Classification in Optical Images,” Applied Sciences, 9(20), p. 4209. Available at: 

             https://doi.org/10.3390/app9204209. [66] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kang et al. [65] investigated to explore the potential of utilizing SAR imagery and a 

convolutional neural network to automatically estimate ship velocity. They discovered a 

proportional relationship between the azimuth offset, which represents the difference in 

direction between ships and wakes, and the Doppler shift effect observed in SAR. This effect 

is indicative of the radial velocity of a moving target, such as a ship. Based on these findings, 

the authors proposed a method that utilizes a CNN to detect ship wakes from TanDEM-X 

data, enabling the automated estimation of ship velocity. Similar to that, but still in a way 

that differs to some extent, Ren et al. [66] introduced a novel ship classification approach 

using a fusion of multi-features with a CNN method. They tested the proposed method on 

visible and infrared spectrums (VAIS) dataset and created their ship dataset from various 

sources. The improved CNN model had shallow layers and fewer parameters, reducing 

computational complexity. Handcrafted features, histogram of oriented gradients (HOG) and 

local binary patterns (LBP), were used to compensate for CNN's limitations in capturing 

local features, resulting in a robust ship classification model. Experimental results showed 

high classification accuracies and outperformance compared to other methods. The authors 

acknowledged the need for further improvements, including expanding the dataset and 

exploring transfer learning techniques. 
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5.2. ANOMALIES OF AIS DATA 

 

 As for the data-driven approaches, Balduzzi et al. [58] described and categorized 

various attacks. The first type refers to implementation-specific vulnerabilities in software, 

while the second type pertains to protocol-specific vulnerabilities in AIS radio transponders. 

At the software layer, there existed the potential to spoof another ship's maritime mobile 

service identity and impersonate that particular vessel [39]. For radio attacks, which are the 

second type, an individual can manipulate the message transmitted by a physical vessel, 

enabling them to change the real-time location of the vessels in transit. The contribution of 

this work was mainly the development of a machine learning method for the detection of 

anomalies at vessels. Their approach was presented through a set of consecutive phases, as 

depicted in Figure 13 [28].  

 

 

  

   

   

  

 

 

 

 

 

The maritime vessel communication protocol AIS is vulnerable to manipulation due 

to a lack of encryption and authentication. Behavior modeling using ML models can detect 

abnormal vessel behavior and enable appropriate mitigation strategies in real-time, thereby 

identifying additional threats. Even vessels lacking the necessary equipment can benefit 

Figure 13 Behavioral model anomaly detection 

 

Source: Coleman, J., Kandah, F. and Huber, B. (2020) Behavioral Model Anomaly Detection in Automatic 

             Identification Systems (AIS), 2020 10th Annual Computing and Communication Workshop and 

             Conference (CCWC). Available at: https://doi.org/10.1109/ccwc47524.2020.9031248. [19] 
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from implementing behavior modeling. Some of the studies aimed to exemplify the 

application of ML in modeling vessel behavior by utilizing temperature sensor data 

transmitted through AIS. As part of future research, the integration of supplementary sensors 

[67] could be explored to enhance the precision and reliability of vessel models. 

Additionally, ML models have the potential to impact trust networks within the maritime 

sector, particularly in vessel-to-vessel communication. By facilitating the maintenance or 

elevation of trust ratings for reliable vessels and the reduction of trust ratings for abnormal 

vessels, ML can play a significant role in shaping robust trust networks in the maritime 

industry [28]. 

Riverio et al. [68] conducted tests to evaluate their approach to anomaly detection. 

They collaborated with Saab Microwave Systems, which provided synthetic test data with 

intentionally hidden anomalies. Using their application, the authors were able to identify 

three different types of anomalies within the test data: 

1. Abnormal speed values: One of the vessels exhibited speed values that deviated 

significantly from the patterns observed in the training data. 

2. Fishing boat behavior: An HF vessel displayed behavior that was typical of a fishing 

boat, which was different from its expected behavior. 

3. Coastal approach: Another HF vessel demonstrated unprecedented behavior by 

approaching the coast. This behavior had not been observed in the analyzed area 

before, and the heading values of the vessel were considered abnormal. 

However, detecting the vessel approaching the coastline required significantly 

reducing the threshold value, which led to a high number of false positives in the results. 

The preliminary results of their research showed that their system was capable of detecting 

anomalies related to single attributes, indicating satisfactory outcomes. Nonetheless, it's 

important to note that the experiments conducted solely evaluated the performance of the 

system in terms of anomaly detection. They have not conducted user tests involving domain 

experts at this stage, but they plan to carry out such evaluations in the future. Additionally, 

the authors highlighted that while their application was designed for maritime anomaly 

detection, it has broader applications in other domains, such as network intrusion detection 

and other areas where anomaly detection is necessary. 
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Figure 14 GMM and KDE probability density functions in the position space, modeling 

                  two parallel vessel trajectories 
 

Source: Riveiro, M., Falkman, G. and Ziemke, T. (2008) Visual Analytics for the Detection of Anomalous 

             Maritime Behavior. Available at: https://doi.org/10.1109/iv.2008.25. [68] 

5.2.1. Methods for AIS anomalies detection 

 

 Gaussian mixture model (GMM) and kernel density estimation are both utilized for 

ship anomaly detection [45]. Some researchers proposed a fast and efficient algorithm based 

on KDE for predicting ship location and velocity [45], which can also be applied to detect 

abnormal ship behavior. Another study also introduced two unsupervised clustering models 

using GMM and the expectation-maximization (EM) algorithm to capture normal vessel 

traffic patterns, considering momentary velocities and positions [69]. Several studies by 

Laxhammar [70] have compared the performance of KDE and GMM in ship anomaly 

detection, evaluating adaptive kernel density estimation and Gaussian mixture model using 

a novel performance measure. The results indicated that while KDE excelled in modeling 

ship normalcy, there was no notable distinction between kernel density estimation and 

Gaussian mixture model in terms of anomaly detection [70]. Similarly, Anneken et al. [20] 

employed GMM and KDE for predicting anomalies, with Gaussian mixture model 

representing a model that finds a set of Gaussian distributions to explain the dataset, while 

kernel density estimation estimates the probability density function of a random variable 

without assuming a specific distribution. Both methods have also shown effectiveness in 

vessel trajectory prediction using historical AIS data [57,21]. In the case of AIS data, 

clustering of forward trajectories is accomplished through GMM clustering using the 

expectation maximization algorithm [21]. The comparison between GMM and KDE based 

on the probability density functions (PDF) is graphically presented in Figure 14. 
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6. SUMMARY TABLE OF USED ARTICLES 

 

 

Table 4 Review of scientific papers reviewed in this bachelor’s thesis 

 

REFERENCE  DESCRIPTION OF APPLICATION CONCLUSION 

[4] Kim2020 This research developed a deep-learning 

method to classify fishing gear types using 

AIS data and environmental factors. The 

proposed approach showed good 

performance in estimating fish catch, 

detecting illegal fishing, and monitoring 

unregistered ships. Further improvements 

and data expansion were identified as future 

opportunities for enhancing the model. 

In conclusion, future work should 

focus on refining the model, 

including reducing the sliding 

window size, expanding the 

number of fishing gear types, and 

collecting larger datasets for 

improved performance. 

[9] Kraus2018 This paper presents a vessel trajectory 

classification model for the German Bight, 

achieving 97.51% accuracy by 

incorporating specialized features and ship 

dimensions. High-resolution radar 

observations are crucial for accurate 

classification when AIS data is unavailable. 

Ship-specific characteristics and 

regular routes play a significant 

role in classification accuracy in 

the German Bight. Future work 

will explore this effect and 

compare the proposed algorithm 

with deep-learning approaches. 

[18] Duan2022 The researchers employed the SSL-VTC 

method, which integrates both labeled and 

unlabeled data to improve the classification 

of vessel trajectories. This approach tackles 

the issue of scarce labeled data availability. 

The SSL-VTC framework 

effectively extracts feature 

representations from AIS 

messages and outperforms 

traditional supervised learning 

approaches. The integration of 

labeled and unlabeled data 

significantly improves 

classification accuracy, offering 

valuable insights for maritime 

applications and ocean 

management. 

[19] Ljunggren2018 This paper applies deep learning to sea 

surveillance for ship-type classification 

based on motion trajectories. By training 

neural networks using a large AIS dataset, 

the study demonstrates the effectiveness of 

this approach compared to conventional 

methods relying on reported ship types. 

The use of deep learning enables 

accurate ship classification based 

on motion trajectories, even when 

AIS information is unreliable. This 

approach enhances sea 

surveillance capabilities and offers 

a more robust ship classification 

system. 

[20] Abebe2020 This research introduces a data-centric 

approach that leverages AIS and weather 

data to precisely predict ship speed over 

ground across various conditions, ship 

categories, and routes. 

The findings demonstrate the 

effectiveness of the methodology, 

achieving high model accuracies of 

over 96% and providing valuable 

insights for route optimization and 

performance enhancement in 

shipping operations. 
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[21] Murray2020 This study uses a linear autoencoder to 

accurately predict complex trajectories 

with computational efficiency. By 

clustering historical trajectories and 

interpolating them in the latent space, new 

trajectories can be generated. The method 

improves prediction quality by focusing on 

individual trajectory clusters. 

The proposed method improves 

vessel trajectory prediction, 

enhancing maritime safety and 

situational awareness. It can be 

extended to autonomous vessels 

for intelligent decision-making. 

Future work includes exploring 

advanced deep-learning methods 

for better navigation and collision 

risk evaluation. 

[22] Schöller2021 This paper presents a novel method for 

marine vessel trajectory prediction using 

AIS data and AIS heatmaps generated 

through kernel density estimation. It 

outperforms traditional methods by 

accurately predicting trajectories based on 

both historical data and positional 

information. 

The proposed method improves 

marine trajectory estimation by 

leveraging AIS heatmaps and 

demonstrates the potential of using 

AIS data for more accurate 

predictions in marine applications. 

[23] Meyer2020 The research demonstrated that a DRL-

based autonomous vessel can avoid 

collisions while following a predetermined 

path, using rangefinder sensors to detect 

obstacles. The agent's training in a 

simulated environment successfully 

generalized to real-world scenarios, 

indicating its potential in complex 

guidance tasks. 

Enhancing DRL agent acceptance 

in safety-critical systems involves 

refining reward functions, ensuring 

explainability, and stability 

analysis, accounting for 

environmental disturbances, and 

exploring multi-agent 

environments for COLREG 

compliance. 

[24] 

Chatzikokolakis2021 

In this study, machine learning algorithms 

are evaluated for detecting SAR patterns in 

noisy AIS data. Decision trees, random 

forests, and gradient boosted trees are 

tested using a substantial amount of 

historical AIS data, resulting in high 

accuracy in identifying SAR activity. 

Among the algorithms, random forests 

exhibit slightly superior performance and 

speed compared to the others. 

This study employs machine 

learning algorithms to 

independently detect SAR patterns 

in AIS data, achieving a high level 

of accuracy. Among the algorithms 

tested, random forests exhibit 

superior performance and speed. 

These findings contribute to 

enhancing the effectiveness and 

autonomy of SAR pattern 

detection. 

[25] Snapir2019 The scientists devised an approach that 

utilizes an RF classifier with five input 

characteristics to differentiate SAR vessel 

detections into fishing and non-fishing 

categories. The method attained a general 

classification accuracy of 91%, although 

the precision for the fishing class stood at 

58%. The precision varied depending on 

the location and the dominance of class 

overlap areas. 

While the vessel count may not 

accurately estimate the number of 

fishing/non-fishing vessels, the 

method effectively captures 

temporal variations in fishing 

activity, addressing the global 

overfishing problem. 
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[26] Ichimura2019 The study highlights accurate ship type 

identification using time series and position 

data, considering factors such as seasons 

and weather. Defining training data for 

abnormal routes and suspicious vessel 

movements is vital, utilizing valuable 

feature values. 

The study finds accurate ship type 

identification through specific data 

and time series analysis. Future 

work will incorporate more factors 

and create new features for 

improved identification. 

[27] Nishizaki2018 The paper proposes an innovative method 

for marine vessel trajectory prediction 

using AIS data. It leverages AIS heatmaps 

generated through kernel density 

estimation to encode long-term historical 

data. The approach surpasses traditional 

methods, utilizing the AIS heatmap to 

accurately predict trajectories that cannot 

be inferred from previous positions alone. 

The study demonstrates the 

superiority of the proposed method 

for marine vessel trajectory 

prediction, utilizing AIS heatmaps 

and encoding long-term data. It 

outperforms traditional 

approaches, accurately predicting 

trajectories missed by using only 

previous positions, emphasizing 

the importance of AIS heatmaps in 

trajectory prediction. 

[28] Coleman2020 The article highlights the limitations of the 

AIS protocol in maritime vessel 

communication and proposes a machine 

learning-based solution to model vessel 

behavior and identify abnormal activities in 

real time. By leveraging temperature sensor 

data transmitted via AIS, the study 

demonstrates the potential of this approach 

for enhancing threat detection and 

benefiting vessels without advanced 

communication equipment. 

Machine learning models can 

enhance vessel communication 

security in the maritime domain by 

improving behavior modeling. 

Integrating additional sensors and 

features improves accuracy. Future 

work should focus on integrating 

models into trust networks for 

reliable communication and 

strengthened security measures. 

[29] Ginoulhac2019 The application focuses on proposing an 

algorithm for classifying 2D tracks, with 

the potential to handle 3D tracks as well. 

The algorithm is designed to classify tracks 

in real-time and update its decisions as 

more data becomes available. 

The proposed algorithm for track 

classification has shown promising 

performance. Despite already 

achieving satisfying results, 

authors claim that there is room for 

improvement. Future work will 

involve testing the algorithm on 

larger and more balanced datasets, 

as well as incorporating additional 

statistics and temporal variables to 

enhance the classifier's 

performance. 

[30] Lang2018 The implementation presents an enhanced 

multi-class A-SVM classifier that 

incorporates simplified NGFs to bolster the 

classification of SAR ships, utilizing AIS 

information. By conducting experiments, it 

showcases the efficacy of leveraging AIS 

knowledge, particularly when dealing with 

a limited number of training samples. 

The research confirms that 

incorporating AIS knowledge 

greatly improves SAR ship 

classification, especially with 

limited training samples. It 

highlights the potential of 

leveraging AIS knowledge to 

enhance classification accuracy. 

Future work should expand the 

methodology to include additional 

SAR image features. 
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[32] Zhang2020 In this paper, a novel method for ship 

encounter classification is introduced, 

leveraging convolutional neural networks. 

The approach involves transforming AIS 

data into encounter images and 

incorporating ship navigational information 

to assess collision risk levels using CNN-

based classification techniques. 

The effectiveness of CNNs in 

classifying ship encounter 

situations based on collision risk 

levels is demonstrated by the 

proposed method. By integrating 

AIS data with navigational 

information, precise risk 

assessments can be conducted, 

thereby improving safety in 

maritime operations. 

[39] Liang2019 The article introduces a two-step approach 

that utilizes random forest and LSTM-

based supervised learning techniques to 

reconstruct vessel trajectories by 

addressing missing AIS data. The objective 

is to enhance the quality and completeness 

of the trajectories. 

The experimental outcomes 

validate the efficacy and resilience 

of the proposed approach in 

reconstructing vessel trajectories, 

presenting promising advantages 

in bolstering maritime security and 

optimizing transportation 

efficiency. 

[41] Liu2020 The paper proposes a framework for 

reconstructing vessel trajectories in 6G-

enabled maritime IoT systems. It utilizes 

outlier detection and bidirectional RNNs to 

enhance the reliability of vessel traffic 

services by removing outliers and restoring 

corrupted points. The framework improves 

trajectory quality compared to other 

methods. 

In conclusion, their two-phase 

approach effectively restored 

degraded trajectories. Future 

research aims to leverage GPU 

computing and diverse data for 

enhanced computation. 

[42] Tang2019 The paper presents an LSTM-based model 

for precise vessel trajectory prediction in 

port regions, benefiting autonomous 

navigation systems. Experimental 

validation using real AIS data from Tianjin 

Port, China, verifies the model's 

effectiveness in trajectory prediction, 

demonstrating its relevance to autonomous 

navigation applications. 

The study emphasizes precise 

trajectory prediction for 

autonomous vessels in ports using 

an LSTM model and AIS data. The 

findings support its integration into 

navigation systems for improved 

collision avoidance and proactive 

navigation. 

[43] Zhang2022 The study focuses on predicting vessel 

locations using a combined model and AIS 

data. They employ the K-nearest neighbors 

(KNN) method to enhance precision, 

particularly in short-term predictions. The 

model considers motion parameters and 

predicts ship positions within a designated 

time range, taking into account ship speed 

and prediction duration. 

The model excels in short-term 

ship location identification but 

struggles with long-term 

predictions due to simplified 

factors and fixed parameter 

weights. Future research should 

prioritize accuracy by considering 

diverse vessel types, analyzing 

trajectories, and incorporating 

environmental factors and AIS data 

for improved ship movement 

predictions. 

[44] Murray2021 This study explores using deep learning for 

proactive collision avoidance in maritime 

transportation. The proposed framework 

predicts vessel trajectories quickly by 

decomposing regional ship behavior into 

local models based on historical AIS data. 

The suggested framework 

successfully predicts global-scale 

trajectories and aims to improve 

uncertainty estimation, 

classification accuracy, and 

weather parameter integration in 

future research. 
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[45] Yan2019 The paper reviews statistical and machine 

learning models used for anomaly detection 

in the maritime domain based on AIS data. 

Hybrid models and interactive systems are 

explored to enhance detection efficiency 

and accuracy. 

Authors highlighted significance in 

enhancing situational awareness 

and maritime safety. Future 

research can focus on integrating 

expert knowledge and advancing 

data-driven techniques for 

improved anomaly detection in 

maritime operations. 

[46] Dästner2018 Global localization data from AIS and 

automatic dependent surveillance–

broadcast (ADS-B) networks enable 

advanced analytics in surveillance systems 

using machine learning. It allows for 

extracting vessel points, classifying traffic, 

and generating route maps. Handling the 

large data volume requires distributed data 

processing with tools like Spark, Hadoop, 

Kafka, or Flink. 

AIS and ADS-B data analytics 

enhance GMTI radar and sensor-

based processing. They enable 

route simulation, improve target 

tracking, and enable trajectory 

predictions. Integrating these 

analytics enhances surveillance 

capabilities and advances sensor-

related processing. 

[47] Martinčič2020 The proposed approach was used to detect 

and correct erroneous data, ultimately 

improving the accuracy and validity of the 

AIS data. Additionally, a metric is 

introduced to assess business and 

environmental efficiency based on 

validated AIS data. 

The demonstrated tool showcases 

the effectiveness of the proposed 

solutions in optimizing logistic 

chains and providing valuable 

insights for vessel operators and 

ports. 

[49] Guo2020 The paper presents an autonomous path-

planning method for unmanned ships using 

DDPG. It combines ship data, COLREGS, 

and crew experience for effective path 

planning and adaptation in unfamiliar 

environments. 

Proposed unmanned ship path 

planning using DDPG and 

improved DRL outperforms 

classical methods. The future 

research is expected to enhance 

effectiveness by incorporating the 

ship's motion model and real-world 

verification. 

[50] Shi2020 The aim of this study was to establish a 

theoretical foundation for the development 

of intelligent collision-avoidance systems 

for unmanned surface vehicles. The 

research introduced a novel technique 

called double GRU-RNN, which effectively 

acquired collision-avoidance decision-

making skills through the analysis of 

successful case data. 

The proposed algorithm, with its 

extensive training in big data and 

remarkable versatility, presents a 

wide array of applications and 

strengthens collision-avoidance 

security by facilitating the timely 

generation and response of 

strategies in unmanned surface 

vehicles. The utilization of the 

double GRU-RNN approach 

demonstrates great potential in 

designing advanced and intelligent 

collision-avoidance systems. 

[51] Lin2022 This study develops a dynamic model and 

an efficient anti-rolling controller for ship 

anti-rolling systems. Using deep 

reinforcement learning, the controller 

achieves effective control under diverse 

conditions, laying the foundation for future 

advancements. 

The DDPG-based intelligent ship 

anti-rolling control method 

achieves over 95% efficiency and 

rapid convergence, addressing 

system limitations and enabling 

advanced anti-rolling controllers 

for full-scale ships. 
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[54] Kim2020 The study uses neural networks to predict 

vessel speeds on the Northern Sea Route. 

By considering location, time, vessel 

characteristics, and ice conditions, accurate 

speed forecasts are achieved. Validated 

with enhanced AIS data, the model 

addresses data challenges and offers reliable 

predictions. 

Neural networks predict vessel 

speeds in Arctic voyages, 

improving safety and transport 

planning. Data challenges must be 

addressed to optimize their use. 

Understanding the model's 

capabilities is crucial for effective 

implementation in Arctic 

navigation. 

[55] Song2020 This research automated ship-bounding box 

extraction from SAR images using AIS 

information, achieving accurate results 

without human intervention. The proposed 

methodology, integrating the Kalman filter 

and satellite orbit restoration, produced 

precise bounding boxes that can be applied 

to SAR and optical image ship detection. 

The study demonstrated the 

effectiveness of the automated 

method for ship bounding box 

extraction using AIS information in 

SAR images, especially in coastal 

areas. The methodology can be 

further extended to ship detection 

in optical images, with the potential 

for ship classification using AIS 

information in future research. 

[56] Song2020 This article aimed to enhance vessel 

detection and classification using SAR 

imagery by integrating AIS data. High-

quality training data was obtained from 

Sentinel-1 SAR images, along with AIS 

information, to improve accuracy. 

The authors automated ship-

bounding box extraction from SAR 

images using AIS information, 

demonstrating its efficacy for ship 

detection, classification, and 

addressing challenges like illegal 

fishing and marine conservation 

while optimizing shipping 

operations. 

[59] Chang2019 The paper evaluates YOLOv2 deep 

network architecture for vessel detection in 

SAR images. YOLOv2 outperforms 

existing technologies in accuracy and near 

real-time performance, especially in 

complex scenarios. 

YOLOv2 shows improved 

accuracy and speed but lacks the 

real-time capability. Introducing 

YOLOv2-reduced, a new 

architecture with better detection 

time on an NVIDIA TITAN X 

GPU. Evaluation of the SSDD 

dataset demonstrates significantly 

faster detection with competent 

accuracy. 

[62] Salem2023 This article introduces an improved model 

structure for classifying ships in inland 

waterways. By incorporating optimized 

CNN models, transfer learning, and 

ensemble learning methods, the 

classification performance is significantly 

enhanced. The ensemble learning approach 

demonstrates exceptional effectiveness, 

achieving an impressive success rate of 

98.38% on the 'Game of Deep Learning' 

dataset." 

The proposed classification method 

outperforms existing algorithms, 

demonstrating its effectiveness in 

ship classification tasks. It exhibits 

high accuracy on datasets such as 

MARVEL and performs well in 

categorizing various ship classes in 

inland waterways. Further 

improvements will focus on 

addressing weather conditions, 

enhancing processing speed, 

handling small data samples, and 

improving image preprocessing for 

noisy and low-contrast images. 
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[64] Nascimento2023 A tool utilizing deep learning and a 

convolutional neural network classifies 

vessel types and loading conditions based 

on the plimsoll disk, enhancing navigation 

safety, and reducing accidents. Its 

capabilities can extend beyond image 

analysis, and despite a limited database, the 

convolutional neural network achieves 

satisfactory results in classification. 

The CNN successfully classified 

vessel types and loading conditions 

despite limited data, with future 

work focusing on real-time image 

analysis, expanding the database, 

and utilizing neural networks for 

port security. Overcoming data 

challenges can be addressed using 

synthetic data, highlighting the 

broad applications of neural 

networks in the field. 

[65] Kang2019 This research presents a novel approach for 

ship wake detection and ship velocity 

estimation using deep learning and image 

analysis techniques. By utilizing 

Convolutional Neural Networks, the 

method accurately identifies wakes and 

extracts relevant data for analysis. The 

proposed approach shows effectiveness in 

estimating ship velocity, particularly in low 

wind conditions, by incorporating Radon 

transforms and edge filtering. 

The study validates the 

effectiveness of the proposed 

method, combining deep learning-

based wake detection and ship 

velocity estimation using azimuth 

offsets. The strong correlation with 

AIS data confirms its accuracy, 

making it a reliable solution for 

estimating ship velocity in open sea 

conditions. 

[66] Ren2019 The authors introduce a novel ship 

classification approach, utilizing a multi-

feature fusion CNN method. Their 

evaluation, conducted using the VAIS 

dataset along with their own ship dataset, 

demonstrates the method's performance. 

By combining handcrafted features such as 

HOG and LBP with CNN, the proposed 

method achieves remarkable classification 

accuracy, surpassing other state-of-the-art 

methods. 

The proposed method achieves 

high ship classification accuracy, 

outperforming other deep 

networks, with rates of 97.50% and 

93.60% on the self-built and VAIS 

datasets, respectively. Evaluation 

metrics validate the effectiveness 

of the improved CNN and feature 

extraction. Further improvements 

can be achieved by expanding the 

dataset and exploring transfer 

learning techniques. 
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7. CHALLENGES AND FUTURE TRENDS 
 

 As ML continues to advance and AIS data becomes more readily available, there are 

both challenges and exciting possibilities on the horizon. One major challenge is still of 

course the quality and reliability of the AIS data itself. Ensuring the accuracy and 

completeness of the data is crucial for training ML models effectively and obtaining reliable 

insights. Additionally, the sheer volume and velocity of AIS data pose significant challenges 

for processing and analysis. Developing efficient algorithms and infrastructure to handle 

large-scale data processing in real-time is essential for harnessing the full potential of ML in 

maritime applications. Another challenge lies in the interpretability of ML models applied 

to AIS data. As ML algorithms become more complex, understanding how they arrive at 

their predictions becomes increasingly important, especially in safety-critical domains. 

Building transparent and interpretable ML models can enhance trust and facilitate the 

adoption of ML-based solutions in the maritime industry.  

Looking ahead, there are promising future trends for ML and AIS data. One notable 

trend that is already being analyzed is the integration of ML with other rising technologies, 

such as Internet of Things (IoT). This kind of merging will allow many advantages like 

improving response times, leading to enhancements and effectiveness in maritime 

operations. Furthermore, the incorporation of ML into anomaly detection systems based on 

AIS data holds great potential. ML algorithms can learn patterns and detect unusual 

behaviors or potential threats, enhancing maritime security and safety. By continuously 

learning from new data, these systems can adapt to evolving risks and provide early warnings 

for potential incidents. Lastly, the integration of ML and AIS data with other maritime data 

sources, such as weather conditions, ocean currents, and port activities, can enable holistic 

and intelligent decision support systems. By leveraging multiple data streams, ML 

algorithms can provide valuable insights for optimizing vessel routes, improving fuel 

efficiency, reducing emissions, and enhancing overall operational efficiency in the maritime 

sector. In summary, while there are challenges to overcome, ML and AIS data offer immense 

opportunities for the maritime industry. By addressing data quality, interpretability, and 

scalability issues, and by embracing emerging trends, we can unlock the full potential of ML 

in transforming maritime operations, sustainability, and most importantly – safety. 
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8. CONCLUSION  

 

Through the detailed analysis of recent scientific literature, this thesis explores the 

wide range of applications, techniques, advantages, and limitations associated with the 

utilization of machine learning and AIS data in the maritime domain. These articles 

collectively demonstrate the remarkable advancements made possible by ML when 

combined with AIS data. Despite the seemingly ordinary nature of AIS devices for vessel 

identification, they have proven to be crucial in the methodologies examined. From vessel 

classification and trajectory prediction to anomaly detection and maritime security, the 

integration of ML and AIS data consistently enhances various aspects of maritime 

operations. The significance of feature engineering is emphasized, as researchers have 

successfully extracted vital attributes from AIS data, including vessel identifiers, positional 

information, time stamps, and kinematic variables. These features play a pivotal role in 

training robust ML models capable of accurately classifying vessels, predicting future 

trajectories, and identifying anomalous behaviors.  

Furthermore, the inclusion of supplementary data sources such as satellite imagery, 

historical data, and weather information has further augmented the performance and 

dependability of ML models. Despite the numerous advantages, challenges related to limited 

labeled training data, data quality, and integrity persist. The need for interpretable and 

explainable models is identified as an area requiring additional attention and research. The 

mentioned limitations merely underscore the importance of understanding the principles 

behind both ML and AIS devices. Ultimately, ML, in conjunction with AIS data, is poised 

to shape the future of the maritime industry, as evidenced by this thesis, which represents 

only a fraction of the remarkable applications of ML and AIS data in this domain. 
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ACRONYM INDEX 

 

ADNAVIS – Advanced Navigation System  

ADS – B – Automatic Dependent Surveillance–Broadcast 

AI – Artificial Intelligence  

AIS – Automatic Identification System 

ANN – Artificial Neural Networks 

BLSTM – Bidirectional Long Short-Term Memory  

CART – Classification and Regression Trees 

CNN – Convolutional Neural Networks 

COG – Course Over Ground 

DBSCAN – Density-Based Spatial Clustering of Applications with Noise 

DDPG – Deep Deterministic Policy Gradient  

DL – Deep Learning 

DSC – Digital Selective Calling 

DTR – Decision Tree Regressor 

DTW – Dynamic Time Warping 

EM – Expectation Maximization  

ETA – Estimated Time of Arrival 

ETR – Extra Trees Regressor 

GMDSS – Global Maritime Distress and Safety System 

GMM – Gaussian mixture model 

GMSK FM – Gaussian Minimum Shift Keying Frequency Modulation 
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GPS – Global Positioning System 

GRU-RNN – Gated Recurrent Unit - Recurrent Neural Network    

HDBSCAN – Hierarchical Density-Based Spatial Clustering of Applications with Noise 

HDLC – High-level Data Link Control 

HOG – Histogram of Oriented Gradients 

IMO – International Maritime Organization 

IoT – Internet of Things 

KDE – Kernel density estimation  

kHz – Kilo Hertz (frequency) 

KNN – K-Nearest Neighbors 

LBP – Local Binary Patterns 

LSTM – Long Short-Term Memory 

MHz – Mega Hertz (frequency) 

ML – Machine Learning  

MMSI – Maritime Mobile Service Identities 

MPN – Multilayer Perceptron Network 

NGF – Naive Geometric Features  

NLAAF – Non-Linear Alignment and Average Filter  

OPTICS – Ordering Points To Identify the Clustering Structure 

PCA – Principal Component Analysis  

R-CNN – Region-based Convolutional Neural Networks 

RL – Reinforcement Learning   

RNNs – Recurrent Neural Networks  
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S-1 – Sentinel 1 

SAR – Search And Rescue 

SAR – Synthetic Aperture Radar 

SOG – Speed Over Ground  

SOTDMA – Self-Organized Time-Division Multiple Access 

SSDD – SAR ship detection dataset  

SUBCLU – SUBspace CLUstering 

SVM – Support Vector Machines 

TREAD – Trajectory Representation, Exploration, and Analysis for Discovery 

USVs – Unmanned Surface Vehicles  

VAIS – Visible And Infrared Spectrums 

VHF – Very High Frequency 

VHF DSC – Very High Frequency Digital Selective Calling 

VHF TDMA – Very High Frequency Time Division Multiple Access 

VMS – Vessel Monitoring System  
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